Modelling of Forecasting Crop Yields Based on Earth Remote Sensing Data and Remote Sensing Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145691" target="_blank" >RIV/00216305:26210/22:PU145691 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cetjournal.it/index.php/cet/article/view/CET2294003" target="_blank" >https://www.cetjournal.it/index.php/cet/article/view/CET2294003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET2294003" target="_blank" >10.3303/CET2294003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling of Forecasting Crop Yields Based on Earth Remote Sensing Data and Remote Sensing Methods
Popis výsledku v původním jazyce
In this work, the authors proposed a method of determining the yield of spring wheat based on the analysis of the dynamics of spectral parameters of its growth and development, determined by multispectral satellite images. It was found that by processing the satellite images of the fields in selected spectral regions, it is possible to estimate with a high degree of reliability the productivity of plants, biomass value, photosynthesis intensity and other parameters. By means of mathematical processing of the statistical data array of phosphorus, potassium and nitrogen content in the soil according to the Remote Sensing (RS) data in comparison with the actual data obtained after agrochemical analysis of soil samples, the total value of the average error (the average absolute error ranging from 24 to 36 % for the analysed period) was calculated. Using remote sensing data and Convolutional Neural Networks (CNN), the forecast of spring wheat yield in the conditions of soil and climatic zone of Eastern Kazakhstan was carried out. The results obtained with the predictive model are close to the actual yield results of the previous year (the error smaller than 9 %), indicating the relationship between yield and agrochemical analysis of the soil.
Název v anglickém jazyce
Modelling of Forecasting Crop Yields Based on Earth Remote Sensing Data and Remote Sensing Methods
Popis výsledku anglicky
In this work, the authors proposed a method of determining the yield of spring wheat based on the analysis of the dynamics of spectral parameters of its growth and development, determined by multispectral satellite images. It was found that by processing the satellite images of the fields in selected spectral regions, it is possible to estimate with a high degree of reliability the productivity of plants, biomass value, photosynthesis intensity and other parameters. By means of mathematical processing of the statistical data array of phosphorus, potassium and nitrogen content in the soil according to the Remote Sensing (RS) data in comparison with the actual data obtained after agrochemical analysis of soil samples, the total value of the average error (the average absolute error ranging from 24 to 36 % for the analysed period) was calculated. Using remote sensing data and Convolutional Neural Networks (CNN), the forecast of spring wheat yield in the conditions of soil and climatic zone of Eastern Kazakhstan was carried out. The results obtained with the predictive model are close to the actual yield results of the previous year (the error smaller than 9 %), indicating the relationship between yield and agrochemical analysis of the soil.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Transactions
ISSN
2283-9216
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
94
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
6
Strana od-do
19-24
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85139266096