Combining Lipschitz and RBF Surrogate Models for High-dimensional Computationally Expensive Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145845" target="_blank" >RIV/00216305:26210/22:PU145845 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025522013342" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025522013342</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2022.11.045" target="_blank" >10.1016/j.ins.2022.11.045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining Lipschitz and RBF Surrogate Models for High-dimensional Computationally Expensive Problems
Popis výsledku v původním jazyce
Standard evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward and computationally cheap. However, in many real-world optimization problems, these evaluations involve computationally expensive numerical simulations or physical experiments. Surrogate-assisted evolutionary algorithms (SAEAs) have recently gained increased attention for their performance in solving these types of problems. The main idea of SAEAs is the integration of an evolutionary algorithm with a selected surrogate model that approximates the computationally expensive function. In this paper, we propose a surrogate model based on a Lipschitz underestimation and use it to develop a differential evolution-based algorithm. The algorithm, called Lipschitz Surrogate-assisted Differential Evolution (LSADE), utilizes the Lipschitz-based surrogate model, along with a standard radial basis function surrogate model and a local search procedure. The experimental results on seven benchmark functions of dimensions 30, 50, 100, and 200 show that the proposed LSADE algorithm is competitive compared with the state-of-the-art algorithms under a limited computational budget, being especially effective for the very complicated benchmark functions in high dimensions.
Název v anglickém jazyce
Combining Lipschitz and RBF Surrogate Models for High-dimensional Computationally Expensive Problems
Popis výsledku anglicky
Standard evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward and computationally cheap. However, in many real-world optimization problems, these evaluations involve computationally expensive numerical simulations or physical experiments. Surrogate-assisted evolutionary algorithms (SAEAs) have recently gained increased attention for their performance in solving these types of problems. The main idea of SAEAs is the integration of an evolutionary algorithm with a selected surrogate model that approximates the computationally expensive function. In this paper, we propose a surrogate model based on a Lipschitz underestimation and use it to develop a differential evolution-based algorithm. The algorithm, called Lipschitz Surrogate-assisted Differential Evolution (LSADE), utilizes the Lipschitz-based surrogate model, along with a standard radial basis function surrogate model and a local search procedure. The experimental results on seven benchmark functions of dimensions 30, 50, 100, and 200 show that the proposed LSADE algorithm is competitive compared with the state-of-the-art algorithms under a limited computational budget, being especially effective for the very complicated benchmark functions in high dimensions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008392" target="_blank" >EF16_026/0008392: Výpočtové simulace pro efektivní nízkoemisní energetiku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFORMATION SCIENCES
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
619
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
457-477
Kód UT WoS článku
000900806500006
EID výsledku v databázi Scopus
2-s2.0-85142307944