Change in Dimensions and Surface Roughness of 42CrMo4 Steel after Nitridation in Plasma and Gas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145916" target="_blank" >RIV/00216305:26210/22:PU145916 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60162694:G43__/23:00558518
Výsledek na webu
<a href="https://www.mdpi.com/2079-6412/12/10/1481" target="_blank" >https://www.mdpi.com/2079-6412/12/10/1481</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/coatings12101481" target="_blank" >10.3390/coatings12101481</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Change in Dimensions and Surface Roughness of 42CrMo4 Steel after Nitridation in Plasma and Gas
Popis výsledku v původním jazyce
The influence of plasma nitriding and gas nitriding processes on the change of surface roughness and dimensional accuracy of 42CrMo4 steel was investigated in this paper. Both processes almost always led to changes in the surface texture. After plasma nitriding, clusters of nitride ions were formed on the surface of steel, while gas nitriding very often led to the new creation of a formation of a “plate-like” surface texture. In both cases of these processes, a compound layer in specific thickness was formed, although the parameters of the processes were chosen with the aim of suppressing it. After the optimizing of nitriding parameters during nitriding processes, it was found that there were no changes in the surface roughness evaluated using the Ra parameter. However, it turned out that when using a multi-parameter evaluation of roughness (the parameters Rz, Rsk and Rku were used), there were presented some changes in roughness due to nitriding processes, which affect the functional behavior of the components. Roughness changes were also detected by evaluating surface roughness profiles, where nitriding led to changes in peak heights and valley depths. Nitriding processes further led to changes in dimensions in the form of an increase of 0.032 mm on average. However, the magnitude of the change has some context on chemical composition of material. A larger increase in dimensions was found with gas nitriding. The change in the degree of IT accuracy is closely related to the change in dimension. For both processes, there was a change of one degree of IT accuracy compared to the ground part (from IT8 to IT9). On the basis of the achieved dimensional accuracy results, a coefficient of change in the degree of accuracy IT was created, which can be used to predict changes in the dimensional accuracy of ground surfaces after nitriding processes in degrees of accuracy IT3–IT10. In this study, a tool for predicting changes in degrees of accuracy of ground parts after nitrid
Název v anglickém jazyce
Change in Dimensions and Surface Roughness of 42CrMo4 Steel after Nitridation in Plasma and Gas
Popis výsledku anglicky
The influence of plasma nitriding and gas nitriding processes on the change of surface roughness and dimensional accuracy of 42CrMo4 steel was investigated in this paper. Both processes almost always led to changes in the surface texture. After plasma nitriding, clusters of nitride ions were formed on the surface of steel, while gas nitriding very often led to the new creation of a formation of a “plate-like” surface texture. In both cases of these processes, a compound layer in specific thickness was formed, although the parameters of the processes were chosen with the aim of suppressing it. After the optimizing of nitriding parameters during nitriding processes, it was found that there were no changes in the surface roughness evaluated using the Ra parameter. However, it turned out that when using a multi-parameter evaluation of roughness (the parameters Rz, Rsk and Rku were used), there were presented some changes in roughness due to nitriding processes, which affect the functional behavior of the components. Roughness changes were also detected by evaluating surface roughness profiles, where nitriding led to changes in peak heights and valley depths. Nitriding processes further led to changes in dimensions in the form of an increase of 0.032 mm on average. However, the magnitude of the change has some context on chemical composition of material. A larger increase in dimensions was found with gas nitriding. The change in the degree of IT accuracy is closely related to the change in dimension. For both processes, there was a change of one degree of IT accuracy compared to the ground part (from IT8 to IT9). On the basis of the achieved dimensional accuracy results, a coefficient of change in the degree of accuracy IT was created, which can be used to predict changes in the dimensional accuracy of ground surfaces after nitriding processes in degrees of accuracy IT3–IT10. In this study, a tool for predicting changes in degrees of accuracy of ground parts after nitrid
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Coatings, MDPI
ISSN
2079-6412
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
„“-„“
Kód UT WoS článku
000872690300001
EID výsledku v databázi Scopus
2-s2.0-85140775701