From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU146843" target="_blank" >RIV/00216305:26210/22:PU146843 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S136403212200747X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S136403212200747X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rser.2022.112865" target="_blank" >10.1016/j.rser.2022.112865</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate
Popis výsledku v původním jazyce
An emerging renewable energy source from living organisms, microalgae are recognized for its remarkable energy content and continuously receiving interest with a great potential in increasing its shares in fuel market. The main challenge for stable biorefinery operation is cultivation, given that the growth of microalgae is highly dependent on climate conditions, especially ambient temperature, and solar exposure. Herein, an advanced forecasting algorithm predicts daily climate conditions a year ahead. The forecast is then used in a dynamic metaheuristic optimization framework to determine optimal microalgae biorefinery process pathways with promising total annual margins and greenhouse gas emissions. In return, the optimal solution is reported with a total annual margin of 815,716 US$/y and greenhouse gas emission of 1.1 x 10(7) kg CO2-eqv/y. The most feasible microalgae species among the selection pool are identified in terms of kinetic growth, which is attributed to the climate behavior of the selected case-study region. A scheduling scheme is then identified for the optimal harvest period of cultivated microalgae. Next, uncertainty analysis for the selected process configuration is conducted using Monte Carlo simulation to investigate how variations in climate conditions will affect its overall performance. Additionally, the process is further enhanced by including renewable electricity sources which allow reducing 50% greenhouse gas emissions with the configuration of biomass energy (1.2%), solar power (0.1%), and wind energy (98.7%). In summary, this study provided a comprehensive guidelines on strategically deploying large scale microalgae biorefineries considering its long-term operational sustainability abiding the possible uncertainties within the system proposed.
Název v anglickém jazyce
From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate
Popis výsledku anglicky
An emerging renewable energy source from living organisms, microalgae are recognized for its remarkable energy content and continuously receiving interest with a great potential in increasing its shares in fuel market. The main challenge for stable biorefinery operation is cultivation, given that the growth of microalgae is highly dependent on climate conditions, especially ambient temperature, and solar exposure. Herein, an advanced forecasting algorithm predicts daily climate conditions a year ahead. The forecast is then used in a dynamic metaheuristic optimization framework to determine optimal microalgae biorefinery process pathways with promising total annual margins and greenhouse gas emissions. In return, the optimal solution is reported with a total annual margin of 815,716 US$/y and greenhouse gas emission of 1.1 x 10(7) kg CO2-eqv/y. The most feasible microalgae species among the selection pool are identified in terms of kinetic growth, which is attributed to the climate behavior of the selected case-study region. A scheduling scheme is then identified for the optimal harvest period of cultivated microalgae. Next, uncertainty analysis for the selected process configuration is conducted using Monte Carlo simulation to investigate how variations in climate conditions will affect its overall performance. Additionally, the process is further enhanced by including renewable electricity sources which allow reducing 50% greenhouse gas emissions with the configuration of biomass energy (1.2%), solar power (0.1%), and wind energy (98.7%). In summary, this study provided a comprehensive guidelines on strategically deploying large scale microalgae biorefineries considering its long-term operational sustainability abiding the possible uncertainties within the system proposed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20901 - Industrial biotechnology
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategické partnerství pro environmentální technologie a produkci energie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
ISSN
1364-0321
e-ISSN
—
Svazek periodika
168
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000888896600004
EID výsledku v databázi Scopus
2-s2.0-85136576822