EFFECT OF Cr AND Ni ELEMENTS ON THE MICROSTRUCTURE AND PROPERTIES OF Cu-Fe-BASED IMMISCIBLE ALLOYS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU147025" target="_blank" >RIV/00216305:26210/22:PU147025 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.confer.cz/metal/2022/4504-effect-of-cr-and-ni-elements-on-the-microstructure-and-properties-of-cu-fe-based-immiscible-alloys" target="_blank" >https://www.confer.cz/metal/2022/4504-effect-of-cr-and-ni-elements-on-the-microstructure-and-properties-of-cu-fe-based-immiscible-alloys</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37904/metal.2022.4504" target="_blank" >10.37904/metal.2022.4504</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EFFECT OF Cr AND Ni ELEMENTS ON THE MICROSTRUCTURE AND PROPERTIES OF Cu-Fe-BASED IMMISCIBLE ALLOYS
Popis výsledku v původním jazyce
The immiscible Cu-Fe system is often used as a base for advanced heterogeneous alloys. With a suitable selection of alloying elements, it is possible to alloy individual phases and therefore tailor microstructure and final properties of a material as needed. To prepare the mentioned multicomponent alloys, it is necessary to understand the effect of individual alloying elements on the microstructure and properties of the Cu-Fe system. Although mostly used method in production of such materials is casting, mechanical alloying appears to be a suitable alternative, enabling a very fine microstructure to be created. The following study is focused on the characterization of Cu50Fe25Cr25and Cu50Fe25Ni25alloys and the effect of the alloying elements on their microstructure. Cr and Ni were selected as a BCC and FCC phase enhancing elements, respectively. The alloys were prepared by mechanical alloying using high-energy ball mill, with subsequent densification using spark plasma sintering. The microstructure of milled powders, as well as bulk samples, was examined, and the evolution of the microstructure during sintering evaluated with respect to the alloying elements. In addition, the hardness of bulk samples was measured. During the mechanical alloying a complete mixing was not achieved, as the milled powders were not single phase. However, a metastable FCC supersaturated solid solution was formed at least partially in both alloys, further decomposing into a multiphase microstructure after sintering.
Název v anglickém jazyce
EFFECT OF Cr AND Ni ELEMENTS ON THE MICROSTRUCTURE AND PROPERTIES OF Cu-Fe-BASED IMMISCIBLE ALLOYS
Popis výsledku anglicky
The immiscible Cu-Fe system is often used as a base for advanced heterogeneous alloys. With a suitable selection of alloying elements, it is possible to alloy individual phases and therefore tailor microstructure and final properties of a material as needed. To prepare the mentioned multicomponent alloys, it is necessary to understand the effect of individual alloying elements on the microstructure and properties of the Cu-Fe system. Although mostly used method in production of such materials is casting, mechanical alloying appears to be a suitable alternative, enabling a very fine microstructure to be created. The following study is focused on the characterization of Cu50Fe25Cr25and Cu50Fe25Ni25alloys and the effect of the alloying elements on their microstructure. Cr and Ni were selected as a BCC and FCC phase enhancing elements, respectively. The alloys were prepared by mechanical alloying using high-energy ball mill, with subsequent densification using spark plasma sintering. The microstructure of milled powders, as well as bulk samples, was examined, and the evolution of the microstructure during sintering evaluated with respect to the alloying elements. In addition, the hardness of bulk samples was measured. During the mechanical alloying a complete mixing was not achieved, as the milled powders were not single phase. However, a metastable FCC supersaturated solid solution was formed at least partially in both alloys, further decomposing into a multiphase microstructure after sintering.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
31st International Conference on Metallurgy and Materials, METAL 2022
ISBN
978-80-88365-06-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
733-738
Název nakladatele
TANGER Ltd.
Místo vydání
Ostrava
Místo konání akce
Orea Congress Hotel Brno
Datum konání akce
18. 5. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—