Application of PCM-based Thermal Energy Storage System in Buildings: A State of the Art Review on the Mathematical Modeling Approaches and Experimental Investigations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU147166" target="_blank" >RIV/00216305:26210/22:PU147166 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11630-022-1650-5" target="_blank" >https://link.springer.com/article/10.1007/s11630-022-1650-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11630-022-1650-5" target="_blank" >10.1007/s11630-022-1650-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of PCM-based Thermal Energy Storage System in Buildings: A State of the Art Review on the Mathematical Modeling Approaches and Experimental Investigations
Popis výsledku v původním jazyce
This review paper critically analyzes the most recent literature (64% published after 2015) on the experimentation and mathematical modeling of latent heat thermal energy storage (LHTES) systems in buildings. Commercial software and in-built codes used for mathematical modeling of LHTES systems are consolidated and reviewed to provide details on the selection of appropriate tools. Insights on software's computing speed, model simplicity, accuracy (by considering the convective term in the melting process), and application of artificial neural networks are reviewed in detail. Moreover, the overall research status of the experiments conducted on the phase change material-based LHTES systems with different experiment configurations is reviewed. The analysis shows that ANSYS Fluent is the most widely used software for specific heat transfer phenomenon in storage tanks, while self-developed models with simplified terms are evaluated as more flexible and easier to apply. For hybrid systems, self-developed MATLAB, mature parts in ESP-r, TRNSYS, and EnergyPlus are compatible. Further, most of the experimental investigations are conducted on the laboratory scale, providing data for model validation. To provide a clear guidance for the future market application, the scope for future works is presented. With this review, it would be easier to develop a unified, simplified, visual, and accurate simulation platform for the PCM-based thermal energy storage in buildings.
Název v anglickém jazyce
Application of PCM-based Thermal Energy Storage System in Buildings: A State of the Art Review on the Mathematical Modeling Approaches and Experimental Investigations
Popis výsledku anglicky
This review paper critically analyzes the most recent literature (64% published after 2015) on the experimentation and mathematical modeling of latent heat thermal energy storage (LHTES) systems in buildings. Commercial software and in-built codes used for mathematical modeling of LHTES systems are consolidated and reviewed to provide details on the selection of appropriate tools. Insights on software's computing speed, model simplicity, accuracy (by considering the convective term in the melting process), and application of artificial neural networks are reviewed in detail. Moreover, the overall research status of the experiments conducted on the phase change material-based LHTES systems with different experiment configurations is reviewed. The analysis shows that ANSYS Fluent is the most widely used software for specific heat transfer phenomenon in storage tanks, while self-developed models with simplified terms are evaluated as more flexible and easier to apply. For hybrid systems, self-developed MATLAB, mature parts in ESP-r, TRNSYS, and EnergyPlus are compatible. Further, most of the experimental investigations are conducted on the laboratory scale, providing data for model validation. To provide a clear guidance for the future market application, the scope for future works is presented. With this review, it would be easier to develop a unified, simplified, visual, and accurate simulation platform for the PCM-based thermal energy storage in buildings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Thermal Science
ISSN
1003-2169
e-ISSN
1993-033X
Svazek periodika
31
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
32
Strana od-do
1821-1852
Kód UT WoS článku
000824985200002
EID výsledku v databázi Scopus
2-s2.0-85133626300