Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

AN INVERSE IDENTIFICATION OF THE AIR MASS FLOW RATE DISTRIBUTION IN THE AIR CHANNELS OF AN AIR-PCM HEAT EXCHANGER

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU147248" target="_blank" >RIV/00216305:26210/22:PU147248 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1615/TFEC2022.ees.040737" target="_blank" >http://dx.doi.org/10.1615/TFEC2022.ees.040737</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1615/TFEC2022.ees.040737" target="_blank" >10.1615/TFEC2022.ees.040737</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    AN INVERSE IDENTIFICATION OF THE AIR MASS FLOW RATE DISTRIBUTION IN THE AIR CHANNELS OF AN AIR-PCM HEAT EXCHANGER

  • Popis výsledku v původním jazyce

    The paper explores the application of the particle swarm optimization (PSO) method to heat transfer in an air-PCM heat exchanger (PCMHX). The studied PCMHX consisted of PCM- filled aluminum panels with air channels between the panels. The study focused on the air mass flow rate distribution in the air channels of the PCMHX. Ideally, there should be the same air mass flow rates in all air channel of the PCMHX. However, due to the connection of an air duct (with a relatively small cross section area) to the PCMHX, the distribution of air mass flow rates to the air channels was not uniform. In the first step, the direct heat transfer problem was solved with the use of the simulation model of the PCMHX. The proposed numerical model was based on the energy balance approach and programmed in MATLAB. The total air mass flow rate and its distribution to the particular air channels was known (20 air channels were considered) with the average mass flow rate of mAVG = 0.078 kg s−1. The complete heat storage cycle of the PCMHX (charging/discharging of heat) was simulated. In the second step, the total air mass flow rate was considered known but its distribution to the particular air channels was assumed to be unknown. The distribution of the air mass flow rates was sought out with the use of the PSO method from the inverse heat transfer problem where the outlet air temperature evolution in time was known (it was obtained in the first step by the solution of the direct problem). A good accuracy of the inversely identified air mass flow rate distribution was achieved in the study. The relative difference of up to 0.1 % and 1 % between the pre-simulated and optimised scenarios was obtained for parameters Δmmax and σa, respectively.

  • Název v anglickém jazyce

    AN INVERSE IDENTIFICATION OF THE AIR MASS FLOW RATE DISTRIBUTION IN THE AIR CHANNELS OF AN AIR-PCM HEAT EXCHANGER

  • Popis výsledku anglicky

    The paper explores the application of the particle swarm optimization (PSO) method to heat transfer in an air-PCM heat exchanger (PCMHX). The studied PCMHX consisted of PCM- filled aluminum panels with air channels between the panels. The study focused on the air mass flow rate distribution in the air channels of the PCMHX. Ideally, there should be the same air mass flow rates in all air channel of the PCMHX. However, due to the connection of an air duct (with a relatively small cross section area) to the PCMHX, the distribution of air mass flow rates to the air channels was not uniform. In the first step, the direct heat transfer problem was solved with the use of the simulation model of the PCMHX. The proposed numerical model was based on the energy balance approach and programmed in MATLAB. The total air mass flow rate and its distribution to the particular air channels was known (20 air channels were considered) with the average mass flow rate of mAVG = 0.078 kg s−1. The complete heat storage cycle of the PCMHX (charging/discharging of heat) was simulated. In the second step, the total air mass flow rate was considered known but its distribution to the particular air channels was assumed to be unknown. The distribution of the air mass flow rates was sought out with the use of the PSO method from the inverse heat transfer problem where the outlet air temperature evolution in time was known (it was obtained in the first step by the solution of the direct problem). A good accuracy of the inversely identified air mass flow rate distribution was achieved in the study. The relative difference of up to 0.1 % and 1 % between the pre-simulated and optimised scenarios was obtained for parameters Δmmax and σa, respectively.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Thermal and Fluids Engineering Summer Conference

  • ISBN

  • ISSN

    2379-1748

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1311-1316

  • Název nakladatele

    Begell House Inc.

  • Místo vydání

    neuveden

  • Místo konání akce

    Las Vegas

  • Datum konání akce

    15. 5. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku