Effect of Chemical Composition Change on Mechanical and Microstructural Properties of Aluminum Alloys Processed by Selective Laser Melting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU147582" target="_blank" >RIV/00216305:26210/22:PU147582 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.confer.cz/metal/2022/4431-effect-of-chemical-composition-change-on-mechanical-and-microstructural-properties-of-aluminum-alloys-processed-by-selective-laser-melting" target="_blank" >https://www.confer.cz/metal/2022/4431-effect-of-chemical-composition-change-on-mechanical-and-microstructural-properties-of-aluminum-alloys-processed-by-selective-laser-melting</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37904/metal.2022.4431" target="_blank" >10.37904/metal.2022.4431</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of Chemical Composition Change on Mechanical and Microstructural Properties of Aluminum Alloys Processed by Selective Laser Melting
Popis výsledku v původním jazyce
Additive manufacturing (AM) has been increasingly used to produce metal components in the last few decades. One of the most popular AM technologies is Selective Laser Melting (SLM). Materials prepared by SLM technology show very good mechanical properties, even though in these materials many defects are present, such as spherical pores, keyhole pores, lack of fusion porosity or cracks. The mentioned defects can be minimized by optimizing the process parameters or changing the chemical composition of the material. Therefore, the objective of this study is to describe changes in the microstructure and mechanical properties depending on the Al alloys chemistry. Three new alloys with different chemical compositions (differs in silica content) were prepared by mechanical mixing of the conventional alloys AlSi12 and AlCu2Mg1.5Ni, and subsequently processed by SLM technology with the same process parameters. Relative density (RD), type of defects, and microstructure were studied in all cases by light microscopy (LM). Mechanical properties were determined by tensile tests performed at room temperature and by hardness tests (HV0.3). Fractographic analysis was performed on fracture surfaces after tensile tests using scanning electron microscopy (SEM). It was found that with an increasing percentage of silica, the RD increases from 95.8 % to 98.8 %. The new alloy with the highest Si content showed the highest tensile test characteristics (UTS = 453 MPa, YS = 243 MPa, and A5.65 = 7.74 %). However, the hardness test did not show a significant difference in the values of individual alloys.
Název v anglickém jazyce
Effect of Chemical Composition Change on Mechanical and Microstructural Properties of Aluminum Alloys Processed by Selective Laser Melting
Popis výsledku anglicky
Additive manufacturing (AM) has been increasingly used to produce metal components in the last few decades. One of the most popular AM technologies is Selective Laser Melting (SLM). Materials prepared by SLM technology show very good mechanical properties, even though in these materials many defects are present, such as spherical pores, keyhole pores, lack of fusion porosity or cracks. The mentioned defects can be minimized by optimizing the process parameters or changing the chemical composition of the material. Therefore, the objective of this study is to describe changes in the microstructure and mechanical properties depending on the Al alloys chemistry. Three new alloys with different chemical compositions (differs in silica content) were prepared by mechanical mixing of the conventional alloys AlSi12 and AlCu2Mg1.5Ni, and subsequently processed by SLM technology with the same process parameters. Relative density (RD), type of defects, and microstructure were studied in all cases by light microscopy (LM). Mechanical properties were determined by tensile tests performed at room temperature and by hardness tests (HV0.3). Fractographic analysis was performed on fracture surfaces after tensile tests using scanning electron microscopy (SEM). It was found that with an increasing percentage of silica, the RD increases from 95.8 % to 98.8 %. The new alloy with the highest Si content showed the highest tensile test characteristics (UTS = 453 MPa, YS = 243 MPa, and A5.65 = 7.74 %). However, the hardness test did not show a significant difference in the values of individual alloys.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007304" target="_blank" >EF16_025/0007304: Materiály s vnitřní architekturou strukturované pro aditivní technologie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
31st International Conference on Metallurgy and Materials, METAL 2022
ISBN
978-80-88365-06-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
574-579
Název nakladatele
TANGER Ltd.
Místo vydání
Ostrava
Místo konání akce
Orea Congress Hotel Brno
Datum konání akce
18. 5. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—