Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU146609" target="_blank" >RIV/00216305:26210/23:PU146609 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1364032122009947#kwrds0010" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364032122009947#kwrds0010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rser.2022.113113" target="_blank" >10.1016/j.rser.2022.113113</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment
Popis výsledku v původním jazyce
Hydrogen applications range from an energy carrier to a feedstock producing bulk and other chemicals and as an essential reactant in various industrial applications. However, the sustainability of hydrogen production, storage and transport are neither unquestionable nor equal. Hydrogen is produced from natural gas, biogas, aluminium, acid gas, biomass, electrolytic water splitting and others; a total of eleven sources were investigated in this work. The environmental impact of hydrogen production, storage and transport is evaluated in terms of greenhouse gas and energy footprints, acidification, eutrophication, human toxicity potential, and eco-cost. Different electricity mixes and energy footprint accounting approaches, supported by sensitivity analysis, are conducted for a comprehensive overview. H2 produced from acid gas is identified as the production route with the highest eco-benefit (-41,188 euro/t H2), while the biomass gasification method incurred the highest eco-cost (11,259 euro/t H2). The water electrolysis method shows a net positive energy footprint (60.32 GJ/t H2), suggesting that more energy is used than produced. Considering the operating footprint of storage, and transportation, gaseous hydrogen transported via a pipeline is a better alternative from an environmental point of view, and with a lower energy footprint (38 %-85%) than the other options. Storage and transport (without construction) could have accounted for around 35.5% of the total GHG footprint of a hydrogen value chain (production, storage, trans-portation and losses) if liquefied and transported via road transport instead of a pipeline. The identified results propose which technologies are less burdensome to the environment.
Název v anglickém jazyce
Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment
Popis výsledku anglicky
Hydrogen applications range from an energy carrier to a feedstock producing bulk and other chemicals and as an essential reactant in various industrial applications. However, the sustainability of hydrogen production, storage and transport are neither unquestionable nor equal. Hydrogen is produced from natural gas, biogas, aluminium, acid gas, biomass, electrolytic water splitting and others; a total of eleven sources were investigated in this work. The environmental impact of hydrogen production, storage and transport is evaluated in terms of greenhouse gas and energy footprints, acidification, eutrophication, human toxicity potential, and eco-cost. Different electricity mixes and energy footprint accounting approaches, supported by sensitivity analysis, are conducted for a comprehensive overview. H2 produced from acid gas is identified as the production route with the highest eco-benefit (-41,188 euro/t H2), while the biomass gasification method incurred the highest eco-cost (11,259 euro/t H2). The water electrolysis method shows a net positive energy footprint (60.32 GJ/t H2), suggesting that more energy is used than produced. Considering the operating footprint of storage, and transportation, gaseous hydrogen transported via a pipeline is a better alternative from an environmental point of view, and with a lower energy footprint (38 %-85%) than the other options. Storage and transport (without construction) could have accounted for around 35.5% of the total GHG footprint of a hydrogen value chain (production, storage, trans-portation and losses) if liquefied and transported via road transport instead of a pipeline. The identified results propose which technologies are less burdensome to the environment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
ISSN
1364-0321
e-ISSN
—
Svazek periodika
173
Číslo periodika v rámci svazku
113113
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000921356000001
EID výsledku v databázi Scopus
2-s2.0-85145554770