Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mathematical modelling and model validation of the heat losses in district heating networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU146612" target="_blank" >RIV/00216305:26210/23:PU146612 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0360544222033461#kwrds0010" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544222033461#kwrds0010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2022.126460" target="_blank" >10.1016/j.energy.2022.126460</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mathematical modelling and model validation of the heat losses in district heating networks

  • Popis výsledku v původním jazyce

    Today the most popular system of district heating systems is based on pre-insulated pipes arranged in parallel or twin-pipe configuration. One of the greatest difficulties with heat distribution through pipelines is thermal loss from the distribution. The most efficient solution to that problem is optimising the insulation wall thickness layer according to the pipe diameter. Heat losses should be minimised at a relatively low investment cost to find the most suitable insulation thickness economically. Numerous studies focus on analytical (1D model) calculations and numerical simulations. However, there is a research gap related to laboratory devices that allow measuring the operation parameters (fluid flow, the temperature of the fluid in the supply pipe and the return pipe). This paper presents an analysis of the heat losses from pre-insulated pipes and twin pipes in the heating system network. This study compares the heat losses in the ground calculated by analytical solution (1D model) with the measurements on the dedicated experimental setup. The calculations have been made for several heating network pipe variants: twin pipes: DN40, DN50, DN65, and their counterparts in a single parallel pre-insulated system. The insulation thickness used in all cases is 30.85 mm for DN40 and 32.00 mm for DN50 and DN65. The insulation is made of rigid polyurethane foam that meets the requirements of the PN-EN 253 standard. During the investigation, the thermal conductivity of insulation material is examined. The obtained thermal conductivity results are used in the calculations. The results from laboratory devices and analytical models have been compared, demonstrating good agreement – with a low error level in the range of approximately 8%, depending on the type of district heating pipe. The validated mathematical model of the heating network is then used to calculate the heat losses in a heating network connecting an underground storage tank with a ground source heat pump. Th

  • Název v anglickém jazyce

    Mathematical modelling and model validation of the heat losses in district heating networks

  • Popis výsledku anglicky

    Today the most popular system of district heating systems is based on pre-insulated pipes arranged in parallel or twin-pipe configuration. One of the greatest difficulties with heat distribution through pipelines is thermal loss from the distribution. The most efficient solution to that problem is optimising the insulation wall thickness layer according to the pipe diameter. Heat losses should be minimised at a relatively low investment cost to find the most suitable insulation thickness economically. Numerous studies focus on analytical (1D model) calculations and numerical simulations. However, there is a research gap related to laboratory devices that allow measuring the operation parameters (fluid flow, the temperature of the fluid in the supply pipe and the return pipe). This paper presents an analysis of the heat losses from pre-insulated pipes and twin pipes in the heating system network. This study compares the heat losses in the ground calculated by analytical solution (1D model) with the measurements on the dedicated experimental setup. The calculations have been made for several heating network pipe variants: twin pipes: DN40, DN50, DN65, and their counterparts in a single parallel pre-insulated system. The insulation thickness used in all cases is 30.85 mm for DN40 and 32.00 mm for DN50 and DN65. The insulation is made of rigid polyurethane foam that meets the requirements of the PN-EN 253 standard. During the investigation, the thermal conductivity of insulation material is examined. The obtained thermal conductivity results are used in the calculations. The results from laboratory devices and analytical models have been compared, demonstrating good agreement – with a low error level in the range of approximately 8%, depending on the type of district heating pipe. The validated mathematical model of the heating network is then used to calculate the heat losses in a heating network connecting an underground storage tank with a ground source heat pump. Th

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Svazek periodika

    267

  • Číslo periodika v rámci svazku

    126460

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    4

  • Strana od-do

    1-14

  • Kód UT WoS článku

    000917290200001

  • EID výsledku v databázi Scopus

    2-s2.0-85145273808