Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multicomponent numerical model for heat pump control with low-temperature heat storage: A benchmark in the conditions of Central Europe

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU146775" target="_blank" >RIV/00216305:26210/23:PU146775 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352710223000086" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352710223000086</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jobe.2023.105829" target="_blank" >10.1016/j.jobe.2023.105829</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multicomponent numerical model for heat pump control with low-temperature heat storage: A benchmark in the conditions of Central Europe

  • Popis výsledku v původním jazyce

    This paper presents a computational parametric study on increasing the Seasonal Coefficient of Performance for residential heat pumps, utilizing an enhanced computational model and comparing it to previous research. The model computes a system that consists of a heat pump, low-temperature heat storage, heat exchanger and circulation pump, and a control unit which allows the heat pump to choose either low-temperature heat storage or ambient air as the favorable heat source. A parametric study is conducted to obtain results from a numerical model describing in detail the heat storage, surrounding soil, and the behavior of a water tank with and without temperature stratification and with two different geometries. These are combined into three different systems. Each system uses an algorithm for heat pump control that combines equithermal regulation and deferred heat storage discharging based on long-term temperature trends. Python is used to transform the numerical model into a computational model, and the assessment of heat pump operation is made based on meteorological data from the years 2012–2021 recorded in the city of Brno, Czech Republic, Central Europe. Previous studies have suggested that this combination for heat pump control and a more detailed numerical model of the system should result in a SCOP increase. In this study, heat losses of an actual occupied building with floor area of 140 m2 without considering heat radiation are used. The results show that stratification cannot be omitted for numerical modelling, and that the geometry of the storage influences how the storage should be designed. For a wide and shallow storage, it is better to insulate the system and increase the SCOP from 3.8 to 4.65, but non-insulated deep and narrow storage can increase the from 3.8 to 4.95. Flow rate is also an important parameter with a local maximum between 0.01 and 0.02 kg/s for every cubic meter of the storage. When a system consisting of parts readily available on the

  • Název v anglickém jazyce

    Multicomponent numerical model for heat pump control with low-temperature heat storage: A benchmark in the conditions of Central Europe

  • Popis výsledku anglicky

    This paper presents a computational parametric study on increasing the Seasonal Coefficient of Performance for residential heat pumps, utilizing an enhanced computational model and comparing it to previous research. The model computes a system that consists of a heat pump, low-temperature heat storage, heat exchanger and circulation pump, and a control unit which allows the heat pump to choose either low-temperature heat storage or ambient air as the favorable heat source. A parametric study is conducted to obtain results from a numerical model describing in detail the heat storage, surrounding soil, and the behavior of a water tank with and without temperature stratification and with two different geometries. These are combined into three different systems. Each system uses an algorithm for heat pump control that combines equithermal regulation and deferred heat storage discharging based on long-term temperature trends. Python is used to transform the numerical model into a computational model, and the assessment of heat pump operation is made based on meteorological data from the years 2012–2021 recorded in the city of Brno, Czech Republic, Central Europe. Previous studies have suggested that this combination for heat pump control and a more detailed numerical model of the system should result in a SCOP increase. In this study, heat losses of an actual occupied building with floor area of 140 m2 without considering heat radiation are used. The results show that stratification cannot be omitted for numerical modelling, and that the geometry of the storage influences how the storage should be designed. For a wide and shallow storage, it is better to insulate the system and increase the SCOP from 3.8 to 4.65, but non-insulated deep and narrow storage can increase the from 3.8 to 4.95. Flow rate is also an important parameter with a local maximum between 0.01 and 0.02 kg/s for every cubic meter of the storage. When a system consisting of parts readily available on the

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008392" target="_blank" >EF16_026/0008392: Výpočtové simulace pro efektivní nízkoemisní energetiku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Building Engineering

  • ISSN

    2352-7102

  • e-ISSN

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    66

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    20

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001012819000001

  • EID výsledku v databázi Scopus

    2-s2.0-85146053558