Hierarchical clustering-based algorithms for optimal waste collection point locations in large-scale problems: A framework development and case study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU148046" target="_blank" >RIV/00216305:26210/23:PU148046 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/70883521:28140/23:63563338
Výsledek na webu
<a href="https://doi.org/10.1016/j.cie.2023.109142" target="_blank" >https://doi.org/10.1016/j.cie.2023.109142</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cie.2023.109142" target="_blank" >10.1016/j.cie.2023.109142</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hierarchical clustering-based algorithms for optimal waste collection point locations in large-scale problems: A framework development and case study
Popis výsledku v původním jazyce
The cities face the challenge of optimizing investments in waste management to meet EU standards while maintaining economic affordability. One of the issues is the optimal location for specialized waste collection points. The main target is to find the lowest number of collection points that would still attain waste production, and the average walking distance to the waste container would be kept beneath the tolerable limit for citizens. The population density and waste production vary over city parts; thus, the need for specialized containers in more populated city centers, industrial zones, or household streets differs. This paper develops a new compu-tational approach providing a robust generalized decision-support tool for waste collection bin location and allocation. This task leads to a mixed-integer linear program which is not solvable for larger cities in a reasonable time. Therefore, hierarchical clustering is applied to simplify the model. Two strategies for solving waste bin allocation (for multiple variants of the model formulation) are implemented and compared - sub-problem definition and representative selection approaches. The resulting framework is tested on the artificial instance and a few case studies where the structure and properties of results are discussed. The combination of presented approaches proved to be appropriate for large-scale instances. The representative selection approach leads to a better distribution of containers within the area in the single-objective model formulation.
Název v anglickém jazyce
Hierarchical clustering-based algorithms for optimal waste collection point locations in large-scale problems: A framework development and case study
Popis výsledku anglicky
The cities face the challenge of optimizing investments in waste management to meet EU standards while maintaining economic affordability. One of the issues is the optimal location for specialized waste collection points. The main target is to find the lowest number of collection points that would still attain waste production, and the average walking distance to the waste container would be kept beneath the tolerable limit for citizens. The population density and waste production vary over city parts; thus, the need for specialized containers in more populated city centers, industrial zones, or household streets differs. This paper develops a new compu-tational approach providing a robust generalized decision-support tool for waste collection bin location and allocation. This task leads to a mixed-integer linear program which is not solvable for larger cities in a reasonable time. Therefore, hierarchical clustering is applied to simplify the model. Two strategies for solving waste bin allocation (for multiple variants of the model formulation) are implemented and compared - sub-problem definition and representative selection approaches. The resulting framework is tested on the artificial instance and a few case studies where the structure and properties of results are discussed. The combination of presented approaches proved to be appropriate for large-scale instances. The representative selection approach leads to a better distribution of containers within the area in the single-objective model formulation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS & INDUSTRIAL ENGINEERING
ISSN
0360-8352
e-ISSN
1879-0550
Svazek periodika
178
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
„“-„“
Kód UT WoS článku
000956557700001
EID výsledku v databázi Scopus
2-s2.0-85163670241