Superlinear solutions of sublinear fractional differential equations and regular variation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU148187" target="_blank" >RIV/00216305:26210/23:PU148187 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s13540-023-00156-1" target="_blank" >https://link.springer.com/article/10.1007/s13540-023-00156-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13540-023-00156-1" target="_blank" >10.1007/s13540-023-00156-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Superlinear solutions of sublinear fractional differential equations and regular variation
Popis výsledku v původním jazyce
We consider a sublinear fractional equation of the order in the interval (1, 2). We give conditions guaranteeing that this equation possesses asymptotically superlinear solutions. We show that all of these solutions are regularly varying and establish precise asymptotic formulae for them. Further we prove non-improvability of the conditions. In addition to the asymptotically superlinear solutions we discuss also other classes of solutions, some of them having no ODE analogy. In the very special case, when the coefficient is asymptotically equivalent to a power function and the order of the equation is 2, we get known results in their full generality. We reveal substantial differences between the integer order and non-integer order case. Among other tools, we utilize the fractional Karamata integration theorem and the fractional generalized L'Hospital rule which are proved in the paper. Several examples illustrating our results but serving also in alternative proofs are given too. We provide also numerical simulations.
Název v anglickém jazyce
Superlinear solutions of sublinear fractional differential equations and regular variation
Popis výsledku anglicky
We consider a sublinear fractional equation of the order in the interval (1, 2). We give conditions guaranteeing that this equation possesses asymptotically superlinear solutions. We show that all of these solutions are regularly varying and establish precise asymptotic formulae for them. Further we prove non-improvability of the conditions. In addition to the asymptotically superlinear solutions we discuss also other classes of solutions, some of them having no ODE analogy. In the very special case, when the coefficient is asymptotically equivalent to a power function and the order of the equation is 2, we get known results in their full generality. We reveal substantial differences between the integer order and non-integer order case. Among other tools, we utilize the fractional Karamata integration theorem and the fractional generalized L'Hospital rule which are proved in the paper. Several examples illustrating our results but serving also in alternative proofs are given too. We provide also numerical simulations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-11846S" target="_blank" >GA20-11846S: Diferenciální a diferenční rovnice reálných řádů: kvalitativní analýza a její aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fractional Calculus and Applied Analysis
ISSN
1311-0454
e-ISSN
1314-2224
Svazek periodika
26
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
BG - Bulharská republika
Počet stran výsledku
27
Strana od-do
989-1015
Kód UT WoS článku
000973087600001
EID výsledku v databázi Scopus
—