Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MediaPipe and Its Suitability for Sign Language Recognition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU148801" target="_blank" >RIV/00216305:26210/23:PU148801 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.engmech.cz/improc/2023/251.pdf" target="_blank" >https://www.engmech.cz/improc/2023/251.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MediaPipe and Its Suitability for Sign Language Recognition

  • Popis výsledku v původním jazyce

    The paper presents the framework MediaPipe as a tool to extract pose features for the task of word-level isolated sign language recognition. It tests the framework’s suitability on the state-of-the-art sign language dataset AUTSL. Extracted sequences of pose features are classified by the Long Short-Term Memory recurrent neural network constructed with the TensorFlow computational library. The paper describes the proposed method flow, preprocessing of the extracted features, and training. Obtained results are then validated on test datasets, and the impact of face landmarks is evaluated. The top-1 accuracy with face landmarks is 49.89 %, while 53.21 % without them.

  • Název v anglickém jazyce

    MediaPipe and Its Suitability for Sign Language Recognition

  • Popis výsledku anglicky

    The paper presents the framework MediaPipe as a tool to extract pose features for the task of word-level isolated sign language recognition. It tests the framework’s suitability on the state-of-the-art sign language dataset AUTSL. Extracted sequences of pose features are classified by the Long Short-Term Memory recurrent neural network constructed with the TensorFlow computational library. The paper describes the proposed method flow, preprocessing of the extracted features, and training. Obtained results are then validated on test datasets, and the impact of face landmarks is evaluated. The top-1 accuracy with face landmarks is 49.89 %, while 53.21 % without them.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů