Low complexity subspace approach for unbiased frequency estimation of a complex single-tone
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU149779" target="_blank" >RIV/00216305:26210/23:PU149779 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1051200423003998" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1051200423003998</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dsp.2023.104304" target="_blank" >10.1016/j.dsp.2023.104304</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Low complexity subspace approach for unbiased frequency estimation of a complex single-tone
Popis výsledku v původním jazyce
We propose a single-tone frequency estimator of a one-dimensional complex signal in complex white Gaussian noise. The estimator is based on the subspace approach and the unitary transformation. Due to its low space and time-complexity, we name the estimator as Low complexity Unitary Principal-singular-vector Utilization for Model Analysis (LUPUMA). Regardless of the observation length, LUPUMA provides a uniform estimation variance over the whole frequency range, while achieving the lowest time-complexity among subspace methods. The proposed estimator asymptotically reaches the Cramér-Rao Lower Bound. For short observations, the signal-to-noise ratio threshold of LUPUMA corresponds to the threshold of the maximum likelihood estimator. The low space and time-complexity along with the stable and state-of-the-art estimation performance for short observations make LUPUMA an ideal candidate for applications with a limited number of signal samples, limited computational power, limited memory, and for applications that require rapid processing time (low latency).
Název v anglickém jazyce
Low complexity subspace approach for unbiased frequency estimation of a complex single-tone
Popis výsledku anglicky
We propose a single-tone frequency estimator of a one-dimensional complex signal in complex white Gaussian noise. The estimator is based on the subspace approach and the unitary transformation. Due to its low space and time-complexity, we name the estimator as Low complexity Unitary Principal-singular-vector Utilization for Model Analysis (LUPUMA). Regardless of the observation length, LUPUMA provides a uniform estimation variance over the whole frequency range, while achieving the lowest time-complexity among subspace methods. The proposed estimator asymptotically reaches the Cramér-Rao Lower Bound. For short observations, the signal-to-noise ratio threshold of LUPUMA corresponds to the threshold of the maximum likelihood estimator. The low space and time-complexity along with the stable and state-of-the-art estimation performance for short observations make LUPUMA an ideal candidate for applications with a limited number of signal samples, limited computational power, limited memory, and for applications that require rapid processing time (low latency).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Digital Signal Processing: A Review Journal
ISSN
1051-2004
e-ISSN
1095-4333
Svazek periodika
145
Číslo periodika v rámci svazku
February 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
001165305400001
EID výsledku v databázi Scopus
2-s2.0-85178663373