Comprehensive experimental and numerical validation of Lattice Boltzmann fluid flow and particle simulations in a child respiratory tract
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU150699" target="_blank" >RIV/00216305:26210/24:PU150699 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0010482524000787?dgcid=author#GS3" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010482524000787?dgcid=author#GS3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compbiomed.2024.107994" target="_blank" >10.1016/j.compbiomed.2024.107994</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comprehensive experimental and numerical validation of Lattice Boltzmann fluid flow and particle simulations in a child respiratory tract
Popis výsledku v původním jazyce
The numerical simulation of inhaled aerosols in medical research starts to play a crucial role in understanding local deposition within the respiratory tract, a feat often unattainable experimentally. Research on children is particularly challenging due to the limited availability of in vivo data and the inherent morphological intricacies. CFD solvers based on Finite Volume Methods (FVM) have been widely employed to solve the flow field in such studies. Recently, Lattice Boltzmann Methods (LBM), a mesoscopic approach, have gained prominence, especially for their scalability on High-Performance Computers. This study endeavours to compare the effectiveness of LBM and FVM in simulating particulate flows within a child’s respiratory tract, supporting research related to particle deposition and medication delivery using LBM. Considering a 5-year-old child’s airway model at a steady inspiratory flow, the results are compared with in vitro experiments. Notably, both LBM and FVM exhibit favourable agreement with experimental data for the mean velocity field and the turbulence intensity. For particle deposition, both numerical methods yield comparable results, aligning well with in vitro experiments across a particle size range of 0.1–20 µm. Discrepancies are identified in the upper airways and trachea, indicating a lower deposition fraction than in the experiment. Nonetheless, both LBM and FVM offer invaluable insights into particle behaviour for different sizes, which are not easily achievable experimentally. In terms of practical implications, the findings of this study hold significance for respiratory medicine and drug delivery systems — potential health impacts, targeted drug delivery strategies or optimisation of respiratory therapies.
Název v anglickém jazyce
Comprehensive experimental and numerical validation of Lattice Boltzmann fluid flow and particle simulations in a child respiratory tract
Popis výsledku anglicky
The numerical simulation of inhaled aerosols in medical research starts to play a crucial role in understanding local deposition within the respiratory tract, a feat often unattainable experimentally. Research on children is particularly challenging due to the limited availability of in vivo data and the inherent morphological intricacies. CFD solvers based on Finite Volume Methods (FVM) have been widely employed to solve the flow field in such studies. Recently, Lattice Boltzmann Methods (LBM), a mesoscopic approach, have gained prominence, especially for their scalability on High-Performance Computers. This study endeavours to compare the effectiveness of LBM and FVM in simulating particulate flows within a child’s respiratory tract, supporting research related to particle deposition and medication delivery using LBM. Considering a 5-year-old child’s airway model at a steady inspiratory flow, the results are compared with in vitro experiments. Notably, both LBM and FVM exhibit favourable agreement with experimental data for the mean velocity field and the turbulence intensity. For particle deposition, both numerical methods yield comparable results, aligning well with in vitro experiments across a particle size range of 0.1–20 µm. Discrepancies are identified in the upper airways and trachea, indicating a lower deposition fraction than in the experiment. Nonetheless, both LBM and FVM offer invaluable insights into particle behaviour for different sizes, which are not easily achievable experimentally. In terms of practical implications, the findings of this study hold significance for respiratory medicine and drug delivery systems — potential health impacts, targeted drug delivery strategies or optimisation of respiratory therapies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-27653S" target="_blank" >GA20-27653S: Vliv vývoje plic u novorozenců a dětí na charakteristiky proudění a depozici aerosolů – výpočtové modelování a experimentální validace</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS IN BIOLOGY AND MEDICINE
ISSN
0010-4825
e-ISSN
1879-0534
Svazek periodika
170
Číslo periodika v rámci svazku
107994
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
„“-„“
Kód UT WoS článku
001179282000001
EID výsledku v databázi Scopus
2-s2.0-85183975977