Solution to the problem of low sensitivity of crack closure models to material properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU150883" target="_blank" >RIV/00216305:26210/24:PU150883 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081723:_____/24:00580722
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167844223005062?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167844223005062?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tafmec.2023.104243" target="_blank" >10.1016/j.tafmec.2023.104243</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solution to the problem of low sensitivity of crack closure models to material properties
Popis výsledku v původním jazyce
The paper focuses on differences between crack closure obtained by numerical models and by experimental fatigue crack growth rates, namely for three different steels (bainitic steel, predominantly pearlitic steel and additively manufactured austenitic stainless steel). The experimental data revealed a load ratio effect different from that predicted by the most used plasticity-induced crack closure (PICC) models. The term "irreversibility of plastic deformation" was proposed in this work to be used as a material property to estimate how strong the PICC effect would be in a material. Two basic phenomena, which are usually omitted in other models, were considered in the explanation: (i) cyclic softening/hardening, (ii) brittle microcracking at the maximum load. The strip-yield model has the ability of conducting fast and accurate simulations under the variable-amplitude loading. It was demonstrated that the results of this model are practically independent of the material properties. This is caused by the consideration of only monotonic elastic-plastic material properties. To simulate real load ratio effects, the parameter beta in the strip-yield model (constraint factor in compression) is proposed to be used as a variable. It enabled a generation of different ratios of monotonic and cyclic plastic zones, which in turn helped to reproduce the crack closure values observed experimentally. Discussion and explanations were provided regarding the material microstructure. The proposed approach considers unequal tensile and compressive yield stresses caused by the different irreversibility of plastic deformation, which explains the dissimilarities in the load ratio effect observed in the investigated materials. It can also improve the accuracy of residual fatigue life estimations.
Název v anglickém jazyce
Solution to the problem of low sensitivity of crack closure models to material properties
Popis výsledku anglicky
The paper focuses on differences between crack closure obtained by numerical models and by experimental fatigue crack growth rates, namely for three different steels (bainitic steel, predominantly pearlitic steel and additively manufactured austenitic stainless steel). The experimental data revealed a load ratio effect different from that predicted by the most used plasticity-induced crack closure (PICC) models. The term "irreversibility of plastic deformation" was proposed in this work to be used as a material property to estimate how strong the PICC effect would be in a material. Two basic phenomena, which are usually omitted in other models, were considered in the explanation: (i) cyclic softening/hardening, (ii) brittle microcracking at the maximum load. The strip-yield model has the ability of conducting fast and accurate simulations under the variable-amplitude loading. It was demonstrated that the results of this model are practically independent of the material properties. This is caused by the consideration of only monotonic elastic-plastic material properties. To simulate real load ratio effects, the parameter beta in the strip-yield model (constraint factor in compression) is proposed to be used as a variable. It enabled a generation of different ratios of monotonic and cyclic plastic zones, which in turn helped to reproduce the crack closure values observed experimentally. Discussion and explanations were provided regarding the material microstructure. The proposed approach considers unequal tensile and compressive yield stresses caused by the different irreversibility of plastic deformation, which explains the dissimilarities in the load ratio effect observed in the investigated materials. It can also improve the accuracy of residual fatigue life estimations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20306 - Audio engineering, reliability analysis
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-28283S" target="_blank" >GA22-28283S: Oxidy indukované zavírání trhliny a jeho dopady na únavovou životnost mechanických komponent (OXILAP)</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
THEORETICAL AND APPLIED FRACTURE MECHANICS
ISSN
0167-8442
e-ISSN
1872-7638
Svazek periodika
130
Číslo periodika v rámci svazku
104243
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
„“-„“
Kód UT WoS článku
001154966800001
EID výsledku v databázi Scopus
2-s2.0-85182023566