Fatigue lifetime predictions of notched specimens based on the critical distance and stress concentration factors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155031" target="_blank" >RIV/00216305:26210/24:PU155031 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081723:_____/24:00588164
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S016784422400329X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S016784422400329X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tafmec.2024.104579" target="_blank" >10.1016/j.tafmec.2024.104579</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fatigue lifetime predictions of notched specimens based on the critical distance and stress concentration factors
Popis výsledku v původním jazyce
The theory of critical distances is used for evaluation of effects of notches on load-bearing capacity of notched components under static or cyclic fatigue loading. The theory can also be used to predict the fatigue life of notched components. One of the assumptions for a reliable prediction is that the critical distance is independent of the notch geometry and its stress concentration level. The study shows that the critical distance depends not only on the number of cycles to failure (under fatigue loading), but also on the notch radius. In this case, direct use of the critical distance leads to unreliable predictions. The study quantifies the relation between the model notch (from which the critical distance is determined) and the predicted notch by means of the ratio of their stress concentration factors. The predictions modified by the ratio of stress concentration factors provide results that are in satisfactory agreement with the experimental data. The predictions were made and verified on the basis of fatigue data measured on two stainless steels 1.4306 and 1.4307, and high strength structural steel S690QL. Smooth and notched specimens were tested on an ultrasonic fatigue machine in a symmetrical tension-compression mode. The results were evaluated in the regions of high cycle and very high cycle fatigue.
Název v anglickém jazyce
Fatigue lifetime predictions of notched specimens based on the critical distance and stress concentration factors
Popis výsledku anglicky
The theory of critical distances is used for evaluation of effects of notches on load-bearing capacity of notched components under static or cyclic fatigue loading. The theory can also be used to predict the fatigue life of notched components. One of the assumptions for a reliable prediction is that the critical distance is independent of the notch geometry and its stress concentration level. The study shows that the critical distance depends not only on the number of cycles to failure (under fatigue loading), but also on the notch radius. In this case, direct use of the critical distance leads to unreliable predictions. The study quantifies the relation between the model notch (from which the critical distance is determined) and the predicted notch by means of the ratio of their stress concentration factors. The predictions modified by the ratio of stress concentration factors provide results that are in satisfactory agreement with the experimental data. The predictions were made and verified on the basis of fatigue data measured on two stainless steels 1.4306 and 1.4307, and high strength structural steel S690QL. Smooth and notched specimens were tested on an ultrasonic fatigue machine in a symmetrical tension-compression mode. The results were evaluated in the regions of high cycle and very high cycle fatigue.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-14886S" target="_blank" >GA21-14886S: Vliv materiálových vlastností vysokopevnostních ocelí na trvanlivost inženýrských staveb a mostů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical and Applied Fracture Mechanics
ISSN
0167-8442
e-ISSN
1872-7638
Svazek periodika
133
Číslo periodika v rámci svazku
104579
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
„“-„“
Kód UT WoS článku
001273481000001
EID výsledku v databázi Scopus
2-s2.0-85198504888