Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluating the impact of human movement-induced airflow on particle dispersion: A novel real-time validation using IoT technology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU156043" target="_blank" >RIV/00216305:26210/24:PU156043 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0378778824009411?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378778824009411?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.enbuild.2024.114825" target="_blank" >10.1016/j.enbuild.2024.114825</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluating the impact of human movement-induced airflow on particle dispersion: A novel real-time validation using IoT technology

  • Popis výsledku v původním jazyce

    Human movement significantly influences local airflow and particle dispersion in indoor environments. Therefore, this study integrates the dynamics of human walking into the analysis of airborne infection risks in a positive pressure isolation ward designed for the protection of immunocompromised patients. Real-time data collection was performed using an anemometer and IoT-based PM sensors to measure airflow velocities and particulate matter (PM) concentrations within a full-scale experimental chamber. Computational Fluid Dynamics (CFD) was used for the numerical simulations, and a User-Defined Function (UDF) code simulated the translational movement of a manikin. The results demonstrated strong agreement with the experimental data, thereby validating the airflow turbulence and Lagrangian-based Discrete Phase Model (DPM) in predicting the airflow velocities and particle transport. The study revealed that human walking substantially enhanced particle dispersion distance by 10-fold compared to static conditions, primarily attributed to intensified air mixing induced by the body movement. Furthermore, the CFD analysis underscored that the direction of walking plays a crucial role in airborne transmission. Specifically, walking away from a patient did not elevate infection risk, whereas approaching a patient significantly increased particle deposition in the patient-occupied region. This study highlights the critical need to consider both movement patterns and directional flow in managing airborne infection risks, contributing to the development of more effective infection control strategies in healthcare settings.

  • Název v anglickém jazyce

    Evaluating the impact of human movement-induced airflow on particle dispersion: A novel real-time validation using IoT technology

  • Popis výsledku anglicky

    Human movement significantly influences local airflow and particle dispersion in indoor environments. Therefore, this study integrates the dynamics of human walking into the analysis of airborne infection risks in a positive pressure isolation ward designed for the protection of immunocompromised patients. Real-time data collection was performed using an anemometer and IoT-based PM sensors to measure airflow velocities and particulate matter (PM) concentrations within a full-scale experimental chamber. Computational Fluid Dynamics (CFD) was used for the numerical simulations, and a User-Defined Function (UDF) code simulated the translational movement of a manikin. The results demonstrated strong agreement with the experimental data, thereby validating the airflow turbulence and Lagrangian-based Discrete Phase Model (DPM) in predicting the airflow velocities and particle transport. The study revealed that human walking substantially enhanced particle dispersion distance by 10-fold compared to static conditions, primarily attributed to intensified air mixing induced by the body movement. Furthermore, the CFD analysis underscored that the direction of walking plays a crucial role in airborne transmission. Specifically, walking away from a patient did not elevate infection risk, whereas approaching a patient significantly increased particle deposition in the patient-occupied region. This study highlights the critical need to consider both movement patterns and directional flow in managing airborne infection risks, contributing to the development of more effective infection control strategies in healthcare settings.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20100 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ENERGY AND BUILDINGS

  • ISSN

    0378-7788

  • e-ISSN

    1872-6178

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    323

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    15

  • Strana od-do

    114825-114825

  • Kód UT WoS článku

    001322389400001

  • EID výsledku v databázi Scopus

    2-s2.0-85204645476