Evaluating the impact of human movement-induced airflow on particle dispersion: A novel real-time validation using IoT technology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU156043" target="_blank" >RIV/00216305:26210/24:PU156043 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0378778824009411?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378778824009411?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.enbuild.2024.114825" target="_blank" >10.1016/j.enbuild.2024.114825</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating the impact of human movement-induced airflow on particle dispersion: A novel real-time validation using IoT technology
Popis výsledku v původním jazyce
Human movement significantly influences local airflow and particle dispersion in indoor environments. Therefore, this study integrates the dynamics of human walking into the analysis of airborne infection risks in a positive pressure isolation ward designed for the protection of immunocompromised patients. Real-time data collection was performed using an anemometer and IoT-based PM sensors to measure airflow velocities and particulate matter (PM) concentrations within a full-scale experimental chamber. Computational Fluid Dynamics (CFD) was used for the numerical simulations, and a User-Defined Function (UDF) code simulated the translational movement of a manikin. The results demonstrated strong agreement with the experimental data, thereby validating the airflow turbulence and Lagrangian-based Discrete Phase Model (DPM) in predicting the airflow velocities and particle transport. The study revealed that human walking substantially enhanced particle dispersion distance by 10-fold compared to static conditions, primarily attributed to intensified air mixing induced by the body movement. Furthermore, the CFD analysis underscored that the direction of walking plays a crucial role in airborne transmission. Specifically, walking away from a patient did not elevate infection risk, whereas approaching a patient significantly increased particle deposition in the patient-occupied region. This study highlights the critical need to consider both movement patterns and directional flow in managing airborne infection risks, contributing to the development of more effective infection control strategies in healthcare settings.
Název v anglickém jazyce
Evaluating the impact of human movement-induced airflow on particle dispersion: A novel real-time validation using IoT technology
Popis výsledku anglicky
Human movement significantly influences local airflow and particle dispersion in indoor environments. Therefore, this study integrates the dynamics of human walking into the analysis of airborne infection risks in a positive pressure isolation ward designed for the protection of immunocompromised patients. Real-time data collection was performed using an anemometer and IoT-based PM sensors to measure airflow velocities and particulate matter (PM) concentrations within a full-scale experimental chamber. Computational Fluid Dynamics (CFD) was used for the numerical simulations, and a User-Defined Function (UDF) code simulated the translational movement of a manikin. The results demonstrated strong agreement with the experimental data, thereby validating the airflow turbulence and Lagrangian-based Discrete Phase Model (DPM) in predicting the airflow velocities and particle transport. The study revealed that human walking substantially enhanced particle dispersion distance by 10-fold compared to static conditions, primarily attributed to intensified air mixing induced by the body movement. Furthermore, the CFD analysis underscored that the direction of walking plays a crucial role in airborne transmission. Specifically, walking away from a patient did not elevate infection risk, whereas approaching a patient significantly increased particle deposition in the patient-occupied region. This study highlights the critical need to consider both movement patterns and directional flow in managing airborne infection risks, contributing to the development of more effective infection control strategies in healthcare settings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20100 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENERGY AND BUILDINGS
ISSN
0378-7788
e-ISSN
1872-6178
Svazek periodika
neuveden
Číslo periodika v rámci svazku
323
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
114825-114825
Kód UT WoS článku
001322389400001
EID výsledku v databázi Scopus
2-s2.0-85204645476