Thermal stability and Ar plus ion irradiation behaviour of SLM AlSi10Mg alloy post-processed via KOBO extrusion method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F25%3APU155118" target="_blank" >RIV/00216305:26210/25:PU155118 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85213965505&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=AUTH%28Kotoul%29&relpos=0" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85213965505&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=AUTH%28Kotoul%29&relpos=0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10973-024-13940-9" target="_blank" >10.1007/s10973-024-13940-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal stability and Ar plus ion irradiation behaviour of SLM AlSi10Mg alloy post-processed via KOBO extrusion method
Popis výsledku v původním jazyce
Ultra-fine-grained (UFG) and nanotwinned (NT) materials are anticipated to exhibit exceptional resistance to irradiation due to their significant volume fraction of grain boundaries. However, a notable drawback is their susceptibility to grain coarsening at elevated temperatures, which significantly limits their practical application as irradiation-resistant materials, particularly in high-temperature environments. In this study, an AlSi10Mg alloy, prepared using laser powder bed fusion (LPBF), underwent post-processing via the KOBO extrusion method, resulting in an ultra-fine-grained microstructure with an enhanced fraction of coincident site lattice (CSL) twin boundaries. The investigation was conducted in three phases. The first phase involved modelling radiation damage to gain insights into the expected behaviour of the microstructures under irradiation. The second phase included a comprehensive analysis of the microstructures of both as-built and KOBO-processed samples using light, scanning, and transmission electron microscopy. This analysis revealed an ultra-fine-grained microstructure with a mean grain size of approximately 0.8 mu m and an increase in the fraction of CSL boundaries from 30% in the as-built state to 42% following KOBO extrusion. In the third phase, the thermal stability of both samples was assessed through annealing experiments conducted for 1 h across a temperature range of 300-500 degrees C, with 50 degrees C intervals. To further explore the impact of the nanotwinned microstructure on thermal stability, irradiation experiments were conducted using 60 keV He+ ions to a dose of 5 x 1017 ions cm(-)2 at 130 degrees C. The results indicated an improved irradiation resistance in the KOBO-processed sample, as evidenced by a thinner sponge-like structure formation upon Ar+-ion irradiation compared to the as-built counterpart.
Název v anglickém jazyce
Thermal stability and Ar plus ion irradiation behaviour of SLM AlSi10Mg alloy post-processed via KOBO extrusion method
Popis výsledku anglicky
Ultra-fine-grained (UFG) and nanotwinned (NT) materials are anticipated to exhibit exceptional resistance to irradiation due to their significant volume fraction of grain boundaries. However, a notable drawback is their susceptibility to grain coarsening at elevated temperatures, which significantly limits their practical application as irradiation-resistant materials, particularly in high-temperature environments. In this study, an AlSi10Mg alloy, prepared using laser powder bed fusion (LPBF), underwent post-processing via the KOBO extrusion method, resulting in an ultra-fine-grained microstructure with an enhanced fraction of coincident site lattice (CSL) twin boundaries. The investigation was conducted in three phases. The first phase involved modelling radiation damage to gain insights into the expected behaviour of the microstructures under irradiation. The second phase included a comprehensive analysis of the microstructures of both as-built and KOBO-processed samples using light, scanning, and transmission electron microscopy. This analysis revealed an ultra-fine-grained microstructure with a mean grain size of approximately 0.8 mu m and an increase in the fraction of CSL boundaries from 30% in the as-built state to 42% following KOBO extrusion. In the third phase, the thermal stability of both samples was assessed through annealing experiments conducted for 1 h across a temperature range of 300-500 degrees C, with 50 degrees C intervals. To further explore the impact of the nanotwinned microstructure on thermal stability, irradiation experiments were conducted using 60 keV He+ ions to a dose of 5 x 1017 ions cm(-)2 at 130 degrees C. The results indicated an improved irradiation resistance in the KOBO-processed sample, as evidenced by a thinner sponge-like structure formation upon Ar+-ion irradiation compared to the as-built counterpart.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004634" target="_blank" >EH22_008/0004634: Strojní inženýrství biologických a bioinspirovaných systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Thermal Analysis and Calorimetry
ISSN
1388-6150
e-ISSN
1588-2926
Svazek periodika
neuveden
Číslo periodika v rámci svazku
leden 2025
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
22
Strana od-do
„“-„“
Kód UT WoS článku
001389310600001
EID výsledku v databázi Scopus
—