Improving Oil Cooling Efficiency Using Polymeric Hollow Fibers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F25%3APU156159" target="_blank" >RIV/00216305:26210/25:PU156159 - isvavai.cz</a>
Výsledek na webu
<a href="https://jffhmt.avestia.com/2025/008.html" target="_blank" >https://jffhmt.avestia.com/2025/008.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11159/jffhmt.2025.008" target="_blank" >10.11159/jffhmt.2025.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Oil Cooling Efficiency Using Polymeric Hollow Fibers
Popis výsledku v původním jazyce
Oil cooling plays a critical role across various industries, such as transformer cooling, automotive, computing, and aerospace. This study introduces an innovative approach to oil cooling, utilizing a thin-walled polymeric hollow fiber heat exchanger. Research mainly focuses on oil cooling in combustion engines, which represent one of the most widespread applications. The designed cooling system is highly adaptable for a wide range of applications. The presented solution offers an attractive alternative characterized by low energy consumption, reduced CO2 emissions, and high specific heat transfer performance. The innovative approach lies in the use of polymer hollow fibres instead of standard aluminium heat exchangers. This strategy also saves space in the engine compartment as the heat exchanger is located in the engine oil sump. This heat exchanger is manufactured from polyamide (PA612) with an outer fiber diameter of 1 mm. Despite the low thermal conductivity of PA612, the polymeric hollow fibre heat exchanger has low thermal resistance owing to its thin wall thickness of only 0.08 mm. The proposed solution underwent rigorous testing on a combustion engine test rig capable of simulating real-world engine operating conditions. The results show that the designed cooling system achieved thermal outputs up to almost 1250 W (with a water flow rate of 1.5 l·min-1 in the heat exchanger). The engine coolant temperatures did not exceed 83.5 °C, remaining within the standard limits. Thus, the proposed system fulfils its function as an oil cooling system.
Název v anglickém jazyce
Improving Oil Cooling Efficiency Using Polymeric Hollow Fibers
Popis výsledku anglicky
Oil cooling plays a critical role across various industries, such as transformer cooling, automotive, computing, and aerospace. This study introduces an innovative approach to oil cooling, utilizing a thin-walled polymeric hollow fiber heat exchanger. Research mainly focuses on oil cooling in combustion engines, which represent one of the most widespread applications. The designed cooling system is highly adaptable for a wide range of applications. The presented solution offers an attractive alternative characterized by low energy consumption, reduced CO2 emissions, and high specific heat transfer performance. The innovative approach lies in the use of polymer hollow fibres instead of standard aluminium heat exchangers. This strategy also saves space in the engine compartment as the heat exchanger is located in the engine oil sump. This heat exchanger is manufactured from polyamide (PA612) with an outer fiber diameter of 1 mm. Despite the low thermal conductivity of PA612, the polymeric hollow fibre heat exchanger has low thermal resistance owing to its thin wall thickness of only 0.08 mm. The proposed solution underwent rigorous testing on a combustion engine test rig capable of simulating real-world engine operating conditions. The results show that the designed cooling system achieved thermal outputs up to almost 1250 W (with a water flow rate of 1.5 l·min-1 in the heat exchanger). The engine coolant temperatures did not exceed 83.5 °C, remaining within the standard limits. Thus, the proposed system fulfils its function as an oil cooling system.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
<a href="/cs/project/8I24002" target="_blank" >8I24002: Výměníky tepla z dutých vláken se sníženou propustností pro inteligentní města</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Fluid Flow, Heat and Mass Transfer
ISSN
2368-6111
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
5
Strana od-do
83-87
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-86000519451