Quantization Effect Influences Identification in Adaptive LQ Controller
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F03%3APU37332" target="_blank" >RIV/00216305:26220/03:PU37332 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantization Effect Influences Identification in Adaptive LQ Controller
Popis výsledku v původním jazyce
Many controlling algorithms were developed to satisfy designer's assumption that controlled process is stable, optimal, adaptive etc. Only few of them should be used in the real-time, on-line adaptation or implemented into Programmable Logic Controller.Algorithms based on neural networks were successfully tested as for the process control as for the process identification. In simulation, quantization effect given by A/D and D/A converter is very often left out. Quantization effect influences identifiedd process transfer function and controller possibilities. In this case, controller controls the process inaccurate and often with oscillations than without quantization. This paper shows a comparison between two identification methods. Online identification (in the real time) based on neural networks and a classical identification are implemented in adaptive LQ controller with three types of A/D and D/A converters at least be closer in simulation the real process controlling.
Název v anglickém jazyce
Quantization Effect Influences Identification in Adaptive LQ Controller
Popis výsledku anglicky
Many controlling algorithms were developed to satisfy designer's assumption that controlled process is stable, optimal, adaptive etc. Only few of them should be used in the real-time, on-line adaptation or implemented into Programmable Logic Controller.Algorithms based on neural networks were successfully tested as for the process control as for the process identification. In simulation, quantization effect given by A/D and D/A converter is very often left out. Quantization effect influences identifiedd process transfer function and controller possibilities. In this case, controller controls the process inaccurate and often with oscillations than without quantization. This paper shows a comparison between two identification methods. Online identification (in the real time) based on neural networks and a classical identification are implemented in adaptive LQ controller with three types of A/D and D/A converters at least be closer in simulation the real process controlling.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F01%2F1485" target="_blank" >GA102/01/1485: Prostředí pro vývoj, modelování a aplikaci heterogenních systémů</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 11th Mediterranean Conference on Control and Automation
ISBN
960-87706-0-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
77-82
Název nakladatele
Kostas J. Kyriakopoulos, National Technical University of Athens, Greece
Místo vydání
Rhodos, Řecko
Místo konání akce
Rhodes
Datum konání akce
18. 6. 2003
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—