Recognition of Emotions in Czech Newspaper Headlines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F11%3APU91508" target="_blank" >RIV/00216305:26220/11:PU91508 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognition of Emotions in Czech Newspaper Headlines
Popis výsledku v původním jazyce
With the growth of internet community, many different text-based documents are produced. Emotion detection and classification in text becomes very important in human-machine interaction or in human-to-human internet communication with this growth. This article refers to this issue in Czech texts. Headlines were extracted from Czech newspapers and Fear, Joy, Anger, Disgust, Sadness, and Surprise emotions are detected. In this work, several algorithms for learning were assessed and compared according to their accuracy of emotion detection and classification of news headlines. The best results were achieved using the SVM (Support Vector Machine) method with a linear kernel, where the presence of the dominant emotion or emotions was analyzed. For individual emotions the following results were obtained: Anger was detected in 87.3 %, Disgust 95.01%, Fear 81.32 %, Joy 71.6 %, Sadness 75.4 %, and Surprise 71.09 %.
Název v anglickém jazyce
Recognition of Emotions in Czech Newspaper Headlines
Popis výsledku anglicky
With the growth of internet community, many different text-based documents are produced. Emotion detection and classification in text becomes very important in human-machine interaction or in human-to-human internet communication with this growth. This article refers to this issue in Czech texts. Headlines were extracted from Czech newspapers and Fear, Joy, Anger, Disgust, Sadness, and Surprise emotions are detected. In this work, several algorithms for learning were assessed and compared according to their accuracy of emotion detection and classification of news headlines. The best results were achieved using the SVM (Support Vector Machine) method with a linear kernel, where the presence of the dominant emotion or emotions was analyzed. For individual emotions the following results were obtained: Anger was detected in 87.3 %, Disgust 95.01%, Fear 81.32 %, Joy 71.6 %, Sadness 75.4 %, and Surprise 71.09 %.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/FR-TI2%2F679" target="_blank" >FR-TI2/679: *Média-informační systém s podporou pokročilých multimediálních služeb</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radioengineering
ISSN
1210-2512
e-ISSN
—
Svazek periodika
2011
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—