Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sparse image extrapolation using different inpainting algorithms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F12%3APU100049" target="_blank" >RIV/00216305:26220/12:PU100049 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sparse image extrapolation using different inpainting algorithms

  • Popis výsledku v původním jazyce

    Image inpainting via approximately solving underdetermined systems of linear equations can take different forms. State of the art methods use sparse solutions of such systems to inpaint (i.e. fill-in) the missing part of an image. Some of these approaches are applicable for image extrapolation as well, but this cannot be seen just as a special case of standard inpainting problem. For example, usual methods assume filling the holes from different directions, which is not tractable in the case of extrapolation. In this paper some of the algorithms that are tailored to inpainting are introduced and modified for use in image extrapolation. We use K-SVD algorithm that trains a dictionary for optimal sparse representation, MCA (Morphological Component Analysis) that expects two incoherent dictionaries for representing separately cartoon and texture. The last algorithm present is the statistics-based EM (Expectation Maximization). The performance of these algorithms for image extrapolation is

  • Název v anglickém jazyce

    Sparse image extrapolation using different inpainting algorithms

  • Popis výsledku anglicky

    Image inpainting via approximately solving underdetermined systems of linear equations can take different forms. State of the art methods use sparse solutions of such systems to inpaint (i.e. fill-in) the missing part of an image. Some of these approaches are applicable for image extrapolation as well, but this cannot be seen just as a special case of standard inpainting problem. For example, usual methods assume filling the holes from different directions, which is not tractable in the case of extrapolation. In this paper some of the algorithms that are tailored to inpainting are introduced and modified for use in image extrapolation. We use K-SVD algorithm that trains a dictionary for optimal sparse representation, MCA (Morphological Component Analysis) that expects two incoherent dictionaries for representing separately cartoon and texture. The last algorithm present is the statistics-based EM (Expectation Maximization). The performance of these algorithms for image extrapolation is

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 14th International Conference on Research in Telecommunication Technologies

  • ISBN

    978-80-554-0569-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    247-251

  • Název nakladatele

    Neuveden

  • Místo vydání

    Neuveden

  • Místo konání akce

    Vrátna, SK

  • Datum konání akce

    1. 9. 2012

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku