Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Implementation Aspects of the Baseband Digital Predistortion Linearizers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F12%3APU98916" target="_blank" >RIV/00216305:26220/12:PU98916 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Implementation Aspects of the Baseband Digital Predistortion Linearizers

  • Popis výsledku v původním jazyce

    Digital predistortion is one of the most popular techniques to combat the power amplifier (PA) nonlinearities in modern transceivers. In order to adjust the predistorter parameters to the time, temperature and frequency variations of the amplifier, the predistorter is required to be adaptive. Two main families of the predistorter adaptation can be distinguished ? direct and indirect learning. Current transceiver architectures tend to multiband, multimode and multistandard implementations, where the amplifier (and so the predistorter) must work in wide frequency range and with various types and bandwidths of digital modulated signals. The predistorter as well as the amplifier is usually modeled by one of the following functions ? the Look-Up-Table (LUT), polynomial function, memory polynomial, orthogonal polynomial etc.

  • Název v anglickém jazyce

    Implementation Aspects of the Baseband Digital Predistortion Linearizers

  • Popis výsledku anglicky

    Digital predistortion is one of the most popular techniques to combat the power amplifier (PA) nonlinearities in modern transceivers. In order to adjust the predistorter parameters to the time, temperature and frequency variations of the amplifier, the predistorter is required to be adaptive. Two main families of the predistorter adaptation can be distinguished ? direct and indirect learning. Current transceiver architectures tend to multiband, multimode and multistandard implementations, where the amplifier (and so the predistorter) must work in wide frequency range and with various types and bandwidths of digital modulated signals. The predistorter as well as the amplifier is usually modeled by one of the following functions ? the Look-Up-Table (LUT), polynomial function, memory polynomial, orthogonal polynomial etc.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/7H11097" target="_blank" >7H11097: Agile RF Transceivers and Front-Ends for Future Smart Multi-Standard Communications Applications</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů