Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-Objective Self-Organizing Migrating Algorithm: Sensitivity on Controlling Parameters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F13%3APU103319" target="_blank" >RIV/00216305:26220/13:PU103319 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://radioeng.cz/fulltexts/2013/13_01_0296_0308.pdf" target="_blank" >http://radioeng.cz/fulltexts/2013/13_01_0296_0308.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-Objective Self-Organizing Migrating Algorithm: Sensitivity on Controlling Parameters

  • Popis výsledku v původním jazyce

    In this paper, we investigate the sensitivity of a novel Multi-Objective Self-Organizing Migrating Algorithm (MOSOMA) on setting its control parameters. Usually, efficiency and accuracy of searching for a solution depends on the settings of a used stochastic algorithm, because multi-objective optimization problems are highly non-linear. In the paper, the sensitivity analysis is performed exploiting a large number of benchmark problems having different properties (the number of optimized parameters, the shape of a Pareto front, etc.). The quality of solutions revealed by MOSOMA is evaluated in terms of a generational distance, a spread and a hyper-volume error. Recommendations for proper settings of the algorithm are derived: These recommendations should help a user to set the algorithm for any multi-objective task without prior knowledge about the solved problem.

  • Název v anglickém jazyce

    Multi-Objective Self-Organizing Migrating Algorithm: Sensitivity on Controlling Parameters

  • Popis výsledku anglicky

    In this paper, we investigate the sensitivity of a novel Multi-Objective Self-Organizing Migrating Algorithm (MOSOMA) on setting its control parameters. Usually, efficiency and accuracy of searching for a solution depends on the settings of a used stochastic algorithm, because multi-objective optimization problems are highly non-linear. In the paper, the sensitivity analysis is performed exploiting a large number of benchmark problems having different properties (the number of optimized parameters, the shape of a Pareto front, etc.). The quality of solutions revealed by MOSOMA is evaluated in terms of a generational distance, a spread and a hyper-volume error. Recommendations for proper settings of the algorithm are derived: These recommendations should help a user to set the algorithm for any multi-objective task without prior knowledge about the solved problem.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Radioengineering

  • ISSN

    1210-2512

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    13

  • Strana od-do

    296-308

  • Kód UT WoS článku

    000318052500014

  • EID výsledku v databázi Scopus