Segmentation of OPG Images in Studying Jawbone Diseases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F13%3APU103388" target="_blank" >RIV/00216305:26220/13:PU103388 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Segmentation of OPG Images in Studying Jawbone Diseases
Popis výsledku v původním jazyce
Image processing in biomedical applications is strongly developing issue. Many methods and approaches for image preprocessing, segmentation and visualization were described. This paper describes OPG image processing. The aim of processing is to segment regions of jawbone cysts and evaluate their local descriptors. It is necessary to choose suitable segmentation method because of adverse parameters of regions. The regions of the cysts are of low contrast and the pixel intensity distribution is not homogenous. The level set, the watershed and the live-wire segmentation method were chosen to testing. The results are compared. The second step of processing is to evaluate local descriptors of segmented regions which correspond to cysts. Several parameters were chosen to describe these regions – region area, mean gray value of intensities, modal gray value of intensities, standard deviation of intensities, minimal and maximal gray value of intensities, integrated intensity, median of intensities and shape descriptors of region (perimeter, circularity, aspect ratio, roundness and solidity). Values of these parameters will be used in following development of semiautomatic processing method with regard to current assessment of cysts by doctors. The algorithm for classification of the type of cyst is presented.
Název v anglickém jazyce
Segmentation of OPG Images in Studying Jawbone Diseases
Popis výsledku anglicky
Image processing in biomedical applications is strongly developing issue. Many methods and approaches for image preprocessing, segmentation and visualization were described. This paper describes OPG image processing. The aim of processing is to segment regions of jawbone cysts and evaluate their local descriptors. It is necessary to choose suitable segmentation method because of adverse parameters of regions. The regions of the cysts are of low contrast and the pixel intensity distribution is not homogenous. The level set, the watershed and the live-wire segmentation method were chosen to testing. The results are compared. The second step of processing is to evaluate local descriptors of segmented regions which correspond to cysts. Several parameters were chosen to describe these regions – region area, mean gray value of intensities, modal gray value of intensities, standard deviation of intensities, minimal and maximal gray value of intensities, integrated intensity, median of intensities and shape descriptors of region (perimeter, circularity, aspect ratio, roundness and solidity). Values of these parameters will be used in following development of semiautomatic processing method with regard to current assessment of cysts by doctors. The algorithm for classification of the type of cyst is presented.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED2.1.00%2F03.0072" target="_blank" >ED2.1.00/03.0072: Centrum senzorických, informačních a komunikačních systémů (SIX)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of PIERS 2013 in Taipei
ISBN
978-1-934142-24-0
ISSN
1559-9450
e-ISSN
—
Počet stran výsledku
4
Strana od-do
21-24
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Taipei
Datum konání akce
25. 3. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—