Connectivity-Based Self-Localization in WSNs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F13%3APU110519" target="_blank" >RIV/00216305:26220/13:PU110519 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Connectivity-Based Self-Localization in WSNs
Popis výsledku v původním jazyce
Efficient localization methods are among the major challenges in wireless sensor networks today. In this paper, we present our so-called connectivity based approach, i.e, based on local connectivity information, to tackle this problem. At first the method fragments the network into larger groups labeled as packs. Based on the mutual connectivity relations with their surrounding packs, we identify border nodes as well as the central node. As this first approach requires some a-priori knowledge on the network topology, we also present a novel segment-based fragmentation method to estimate the central pack of the network as well as detecting so-called corner packs without any a-priori knowledge. Based on these detected points, the network is fragmented into a set of even larger elements, so-called segments built on top of the packs, supporting even more localization information as they all reach the central node.
Název v anglickém jazyce
Connectivity-Based Self-Localization in WSNs
Popis výsledku anglicky
Efficient localization methods are among the major challenges in wireless sensor networks today. In this paper, we present our so-called connectivity based approach, i.e, based on local connectivity information, to tackle this problem. At first the method fragments the network into larger groups labeled as packs. Based on the mutual connectivity relations with their surrounding packs, we identify border nodes as well as the central node. As this first approach requires some a-priori knowledge on the network topology, we also present a novel segment-based fragmentation method to estimate the central pack of the network as well as detecting so-called corner packs without any a-priori knowledge. Based on these detected points, the network is fragmented into a set of even larger elements, so-called segments built on top of the packs, supporting even more localization information as they all reach the central node.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radioengineering
ISSN
1210-2512
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
818-827
Kód UT WoS článku
000324900200020
EID výsledku v databázi Scopus
—