Blood Vessel Segmentation in Video-Sequences From the Human Retina
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU110820" target="_blank" >RIV/00216305:26220/14:PU110820 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IST.2014.6958459" target="_blank" >http://dx.doi.org/10.1109/IST.2014.6958459</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IST.2014.6958459" target="_blank" >10.1109/IST.2014.6958459</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Blood Vessel Segmentation in Video-Sequences From the Human Retina
Popis výsledku v původním jazyce
This paper deals with the retinal blood vessel segmentation in fundus video-sequences acquired by experimental fundus video camera. Quality of acquired video-sequences is relatively low and fluctuates across particular frames. Especially, due to the low resolution, poor signal-to-noise ratio, and varying illumination conditions within the frames, application of standard image processing methods might be difficult in such experimental fundus images. In this study, we tried two methods for the segmentation of retinal vessels – matched filtering and Hessian-based approach, originally developed for vessel segmentation in standard fundus images. We showed that modified versions of these two approaches, combined with support vector machine (SVM), can be used also for segmentation in experimental low-quality fundus video-sequences. The SVM classifier trained and consecutively tested on the database of high-resolution images achieved classification accuracy over 94 % and thus revealed a possible applicability of the proposed method on low-quality data. Then, testing on low-quality video-sequences revealed sufficiently large reliability in term of segmentation stability within the sequence with the inter-frame variability in image quality.
Název v anglickém jazyce
Blood Vessel Segmentation in Video-Sequences From the Human Retina
Popis výsledku anglicky
This paper deals with the retinal blood vessel segmentation in fundus video-sequences acquired by experimental fundus video camera. Quality of acquired video-sequences is relatively low and fluctuates across particular frames. Especially, due to the low resolution, poor signal-to-noise ratio, and varying illumination conditions within the frames, application of standard image processing methods might be difficult in such experimental fundus images. In this study, we tried two methods for the segmentation of retinal vessels – matched filtering and Hessian-based approach, originally developed for vessel segmentation in standard fundus images. We showed that modified versions of these two approaches, combined with support vector machine (SVM), can be used also for segmentation in experimental low-quality fundus video-sequences. The SVM classifier trained and consecutively tested on the database of high-resolution images achieved classification accuracy over 94 % and thus revealed a possible applicability of the proposed method on low-quality data. Then, testing on low-quality video-sequences revealed sufficiently large reliability in term of segmentation stability within the sequence with the inter-frame variability in image quality.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings
ISBN
978-1-4799-6748-3
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
129-133
Název nakladatele
IEEE
Místo vydání
Santorini, Greece
Místo konání akce
Thira, Santorini, Greece
Datum konání akce
14. 10. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—