An experimental comparison of feature selection methods on two-class biomedical datasets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F15%3APU116428" target="_blank" >RIV/00216305:26220/15:PU116428 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.compbiomed.2015.08.010" target="_blank" >http://dx.doi.org/10.1016/j.compbiomed.2015.08.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compbiomed.2015.08.010" target="_blank" >10.1016/j.compbiomed.2015.08.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An experimental comparison of feature selection methods on two-class biomedical datasets
Popis výsledku v původním jazyce
Feature selection is a significant part of many machine learning applications dealing with small-sample and high-dimensional data. Choosing the most important features is an essential step for knowledge discovery in many areas of biomedical informatics. The increased popularity of feature selection methods and their frequent utilisation raise challenging new questions about the interpretability and stability of feature selection techniques. In this study, we compared the behaviour of ten state-of-the-art filter methods for feature selection in terms of their stability, similarity, and influence on prediction performance. All of the experiments were conducted on eight two-class datasets from biomedical areas. While entropy-based feature selection appears to be the most stable, the feature selection techniques yielding the highest prediction performance are minimum redundance maximum relevance method and feature selection based on Bhattacharyya distance. In general, univariate feature selection techniques perform similarly to or even better than more complex multivariate feature selection techniques with high-dimensional datasets. However, with more complex and smaller datasets multivariate methods slightly outperform univariate techniques.
Název v anglickém jazyce
An experimental comparison of feature selection methods on two-class biomedical datasets
Popis výsledku anglicky
Feature selection is a significant part of many machine learning applications dealing with small-sample and high-dimensional data. Choosing the most important features is an essential step for knowledge discovery in many areas of biomedical informatics. The increased popularity of feature selection methods and their frequent utilisation raise challenging new questions about the interpretability and stability of feature selection techniques. In this study, we compared the behaviour of ten state-of-the-art filter methods for feature selection in terms of their stability, similarity, and influence on prediction performance. All of the experiments were conducted on eight two-class datasets from biomedical areas. While entropy-based feature selection appears to be the most stable, the feature selection techniques yielding the highest prediction performance are minimum redundance maximum relevance method and feature selection based on Bhattacharyya distance. In general, univariate feature selection techniques perform similarly to or even better than more complex multivariate feature selection techniques with high-dimensional datasets. However, with more complex and smaller datasets multivariate methods slightly outperform univariate techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS IN BIOLOGY AND MEDICINE
ISSN
0010-4825
e-ISSN
1879-0534
Svazek periodika
66
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000365367400001
EID výsledku v databázi Scopus
—