k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU116424" target="_blank" >RIV/00216305:26220/16:PU116424 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.13164/re.2016.0365" target="_blank" >http://dx.doi.org/10.13164/re.2016.0365</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/re.2016.0365" target="_blank" >10.13164/re.2016.0365</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks
Popis výsledku v původním jazyce
Power analysis presents the typical example of successful attacks against trusted cryptographic devices such as RFID (Radio-Frequency IDentifications) and contact smart cards. In recent years, the cryptographic community has explored new approaches in power analysis based on machine learning models such as Support Vector Machine (SVM), RF (Random Forest) and Multi-Layer Perceptron (MLP). In this paper, we made an extensive comparison of machine learning algorithms in the power analysis. For this purpose, we implemented a verification program that always chooses the optimal settings of individual machine learning models in order to obtain the best classification accuracy. In our research, we used three datasets, the first contains the power traces of an unprotected AES (Advanced Encryption Standard) implementation. The second and third datasets are created independently from public available power traces corresponding to a masked AES implementation (DPA Contest v4). The obtained results revealed some interesting facts, namely, an elementary textit{k}-NN (textit{k}-Nearest Neighbors) algorithm, which has not been commonly used in power analysis yet, shows great application potential in practice.
Název v anglickém jazyce
k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks
Popis výsledku anglicky
Power analysis presents the typical example of successful attacks against trusted cryptographic devices such as RFID (Radio-Frequency IDentifications) and contact smart cards. In recent years, the cryptographic community has explored new approaches in power analysis based on machine learning models such as Support Vector Machine (SVM), RF (Random Forest) and Multi-Layer Perceptron (MLP). In this paper, we made an extensive comparison of machine learning algorithms in the power analysis. For this purpose, we implemented a verification program that always chooses the optimal settings of individual machine learning models in order to obtain the best classification accuracy. In our research, we used three datasets, the first contains the power traces of an unprotected AES (Advanced Encryption Standard) implementation. The second and third datasets are created independently from public available power traces corresponding to a masked AES implementation (DPA Contest v4). The obtained results revealed some interesting facts, namely, an elementary textit{k}-NN (textit{k}-Nearest Neighbors) algorithm, which has not been commonly used in power analysis yet, shows great application potential in practice.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1401" target="_blank" >LO1401: Interdisciplinární výzkum bezdrátových technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radioengineering
ISSN
1210-2512
e-ISSN
—
Svazek periodika
1
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
19
Strana od-do
11-28
Kód UT WoS článku
000377231900020
EID výsledku v databázi Scopus
2-s2.0-85015616068