Optimization Methods in Emotion Recognition System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119782" target="_blank" >RIV/00216305:26220/16:PU119782 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.13164/re.2016.0565" target="_blank" >http://dx.doi.org/10.13164/re.2016.0565</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/re.2016.0565" target="_blank" >10.13164/re.2016.0565</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization Methods in Emotion Recognition System
Popis výsledku v původním jazyce
Emotions play big role in our everyday communication and contain important information. This work describes a novel method of automatic emotion recognition from textual data. The method is based on well-known data mining techniques, novel approach based on parallel run of SVM (Support Vector Machine) classifiers, text preprocessing and 3 optimization methods: sequential elimination of attributes, parameter optimization based on token groups, and method of extending train data sets during practical testing and production release final tuning. We outperformed current state of the art methods and the results were validated on bigger data sets (3346 manually labelled samples) which is less prone to overfitting when compared to related works. The accuracy achieved in this work is 86.89%for recognition of 5 emotional classes. The experiments were performed in the real world helpdesk environment, was processing Czech language but the proposed methodology is general and can be applied to many different languages.
Název v anglickém jazyce
Optimization Methods in Emotion Recognition System
Popis výsledku anglicky
Emotions play big role in our everyday communication and contain important information. This work describes a novel method of automatic emotion recognition from textual data. The method is based on well-known data mining techniques, novel approach based on parallel run of SVM (Support Vector Machine) classifiers, text preprocessing and 3 optimization methods: sequential elimination of attributes, parameter optimization based on token groups, and method of extending train data sets during practical testing and production release final tuning. We outperformed current state of the art methods and the results were validated on bigger data sets (3346 manually labelled samples) which is less prone to overfitting when compared to related works. The accuracy achieved in this work is 86.89%for recognition of 5 emotional classes. The experiments were performed in the real world helpdesk environment, was processing Czech language but the proposed methodology is general and can be applied to many different languages.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1401" target="_blank" >LO1401: Interdisciplinární výzkum bezdrátových technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radioengineering
ISSN
1805-9600
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
565-572
Kód UT WoS článku
000383310900019
EID výsledku v databázi Scopus
2-s2.0-84996636869