On Two-dimensional Numerical Inverse Laplace Transforms with Transmission Line Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119988" target="_blank" >RIV/00216305:26220/16:PU119988 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7734298&isnumber=7734201" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7734298&isnumber=7734201</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/PIERS.2016.7734298" target="_blank" >10.1109/PIERS.2016.7734298</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Two-dimensional Numerical Inverse Laplace Transforms with Transmission Line Applications
Popis výsledku v původním jazyce
Continuous space-time systems, such as transmission lines (TL) with distributed parameters, are normally described by linear 2D partial differential equations, and hence in these cases it is very difficult or even impossible to obtain the space-time response analytically, which brings out the importance of utilizing numerical techniques [1, 2]. In this paper three 2D numerical inverse Laplace transform (NILT) methods are presented, which have the capability of retrieving the space-time response in one single calculation step. Initially the selected 2D-NILT methods, which are devised based on either Fourier series or Pade approximation, are implemented and verified in the Matlab environment. The numerical methods are examined by the use of relevant test functions in the Laplace domain with pre-known originals. Furthermore, the 2D-NILT methods results are analysed from an electrical engineering point of view to observe their performance as for their accuracy, universality and stability. Following, there will be an application of these 2D-NILTs independently on a transmission line described by a Laplace model.
Název v anglickém jazyce
On Two-dimensional Numerical Inverse Laplace Transforms with Transmission Line Applications
Popis výsledku anglicky
Continuous space-time systems, such as transmission lines (TL) with distributed parameters, are normally described by linear 2D partial differential equations, and hence in these cases it is very difficult or even impossible to obtain the space-time response analytically, which brings out the importance of utilizing numerical techniques [1, 2]. In this paper three 2D numerical inverse Laplace transform (NILT) methods are presented, which have the capability of retrieving the space-time response in one single calculation step. Initially the selected 2D-NILT methods, which are devised based on either Fourier series or Pade approximation, are implemented and verified in the Matlab environment. The numerical methods are examined by the use of relevant test functions in the Laplace domain with pre-known originals. Furthermore, the 2D-NILT methods results are analysed from an electrical engineering point of view to observe their performance as for their accuracy, universality and stability. Following, there will be an application of these 2D-NILTs independently on a transmission line described by a Laplace model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-18288S" target="_blank" >GA15-18288S: Výzkum integrity signálů u vysokorychlostních propojovacích struktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 Progress In Electromagnetics Research Symposium (PIERS)
ISBN
978-1-5090-6093-1
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
227-231
Název nakladatele
IEEE
Místo vydání
Shanghai, China
Místo konání akce
Shanghai
Datum konání akce
8. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000400013900093