Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sequential Monte Carlo estimation of transition probabilities in mixture filtering problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119992" target="_blank" >RIV/00216305:26220/16:PU119992 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7528003&isnumber=7527857" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7528003&isnumber=7527857</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sequential Monte Carlo estimation of transition probabilities in mixture filtering problems

  • Popis výsledku v původním jazyce

    Physical systems switching between various working regimes are often encountered in practical applications. However, transition probabilities, according to which a system switches from the current regime to another one, are commonly designed as a priori known parameters, and their misspecification can degrade the performance of the algorithms filtering (or estimating) latent variables of the system. To overcome the misspecification, the present paper proposes a novel Sequential Monte Carlo procedure for estimating the transition probabilities. More specifically, it extends the concept of Rao-Blackwellization to the Dirichlet distribution, which represents the model of these probabilities. The experiments show that the proposed technique outperforms some of the classical methods in terms of the estimation precision and also the precision stability.

  • Název v anglickém jazyce

    Sequential Monte Carlo estimation of transition probabilities in mixture filtering problems

  • Popis výsledku anglicky

    Physical systems switching between various working regimes are often encountered in practical applications. However, transition probabilities, according to which a system switches from the current regime to another one, are commonly designed as a priori known parameters, and their misspecification can degrade the performance of the algorithms filtering (or estimating) latent variables of the system. To overcome the misspecification, the present paper proposes a novel Sequential Monte Carlo procedure for estimating the transition probabilities. More specifically, it extends the concept of Rao-Blackwellization to the Dirichlet distribution, which represents the model of these probabilities. The experiments show that the proposed technique outperforms some of the classical methods in terms of the estimation precision and also the precision stability.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 19th International Conference on Information Fusion, FUSION 2016

  • ISBN

    978-1-5090-2012-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1063-1070

  • Název nakladatele

    International Society of Information Fusion

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Heidelberg

  • Datum konání akce

    5. 7. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000391273400142