Sequential Monte Carlo estimation of transition probabilities in mixture filtering problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119992" target="_blank" >RIV/00216305:26220/16:PU119992 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7528003&isnumber=7527857" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7528003&isnumber=7527857</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sequential Monte Carlo estimation of transition probabilities in mixture filtering problems
Popis výsledku v původním jazyce
Physical systems switching between various working regimes are often encountered in practical applications. However, transition probabilities, according to which a system switches from the current regime to another one, are commonly designed as a priori known parameters, and their misspecification can degrade the performance of the algorithms filtering (or estimating) latent variables of the system. To overcome the misspecification, the present paper proposes a novel Sequential Monte Carlo procedure for estimating the transition probabilities. More specifically, it extends the concept of Rao-Blackwellization to the Dirichlet distribution, which represents the model of these probabilities. The experiments show that the proposed technique outperforms some of the classical methods in terms of the estimation precision and also the precision stability.
Název v anglickém jazyce
Sequential Monte Carlo estimation of transition probabilities in mixture filtering problems
Popis výsledku anglicky
Physical systems switching between various working regimes are often encountered in practical applications. However, transition probabilities, according to which a system switches from the current regime to another one, are commonly designed as a priori known parameters, and their misspecification can degrade the performance of the algorithms filtering (or estimating) latent variables of the system. To overcome the misspecification, the present paper proposes a novel Sequential Monte Carlo procedure for estimating the transition probabilities. More specifically, it extends the concept of Rao-Blackwellization to the Dirichlet distribution, which represents the model of these probabilities. The experiments show that the proposed technique outperforms some of the classical methods in terms of the estimation precision and also the precision stability.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 19th International Conference on Information Fusion, FUSION 2016
ISBN
978-1-5090-2012-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1063-1070
Název nakladatele
International Society of Information Fusion
Místo vydání
Heidelberg
Místo konání akce
Heidelberg
Datum konání akce
5. 7. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000391273400142