Automatic Detection of Red Lesions in Diabetic Retinopathy using Shape Based Extraction Technique in Fundus Image
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU120118" target="_blank" >RIV/00216305:26220/16:PU120118 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/7760938" target="_blank" >https://ieeexplore.ieee.org/abstract/document/7760938</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2016.7760938" target="_blank" >10.1109/TSP.2016.7760938</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Detection of Red Lesions in Diabetic Retinopathy using Shape Based Extraction Technique in Fundus Image
Popis výsledku v původním jazyce
The paper proposes an automatic image processing algorithm based on shape features for the detection of red lesions. In Diabetic Retinopathy Micro-aneurysms and hemorrhages comes under the category of red lesions, which is the most common eye disease caused in diabetic patients and also leads to blindness. This paper describes an effective methodology to study any computer-aided fundus image that can be utilized as a tool for diagnosis and detection of red lesions. A Shape based extraction technique using three parameters i.e. Perimeter Area and Eccentricity is used to segment out the red lesions from rest of the image. Since the algorithm consider shape features for detection of red lesion which makes it efficient and independent of image quality. The results that are experimentally obtained by applying this algorithm has been compared with those of the ophthalmologist and the comparison of these results have been highly accurate. In addition to the accuracy of the obtained results, the proposed method is fast and having very low computational time.
Název v anglickém jazyce
Automatic Detection of Red Lesions in Diabetic Retinopathy using Shape Based Extraction Technique in Fundus Image
Popis výsledku anglicky
The paper proposes an automatic image processing algorithm based on shape features for the detection of red lesions. In Diabetic Retinopathy Micro-aneurysms and hemorrhages comes under the category of red lesions, which is the most common eye disease caused in diabetic patients and also leads to blindness. This paper describes an effective methodology to study any computer-aided fundus image that can be utilized as a tool for diagnosis and detection of red lesions. A Shape based extraction technique using three parameters i.e. Perimeter Area and Eccentricity is used to segment out the red lesions from rest of the image. Since the algorithm consider shape features for detection of red lesion which makes it efficient and independent of image quality. The results that are experimentally obtained by applying this algorithm has been compared with those of the ophthalmologist and the comparison of these results have been highly accurate. In addition to the accuracy of the obtained results, the proposed method is fast and having very low computational time.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1401" target="_blank" >LO1401: Interdisciplinární výzkum bezdrátových technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
39th International Conference on Telecommunications and Signal Processing (TSP) 2016
ISBN
978-1-5090-1287-9
ISSN
1805-5435
e-ISSN
—
Počet stran výsledku
5
Strana od-do
538-542
Název nakladatele
Neuveden
Místo vydání
neuveden
Místo konání akce
Vídeň
Datum konání akce
27. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000390164000117