Evaluation of Variances in Hybrid MTL Systems with Stochastic Parameters via SDAE Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU121818" target="_blank" >RIV/00216305:26220/16:PU121818 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/7735275" target="_blank" >https://ieeexplore.ieee.org/document/7735275</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of Variances in Hybrid MTL Systems with Stochastic Parameters via SDAE Approach
Popis výsledku v původním jazyce
In the paper, an attention is paid to hybrid (lumped-distributed) systems with the MTLs as their distributed parts, whereas parameters of the system can vary randomly. In case of the MTL itself, with rather simple terminating elements, just the SDE theory would be applicable when taking into account some proper numerical technique. Usually, evaluation of the dispersion of responses of the system is needed which can be resolved via confidence intervals determination. To do it, either the solution of the SDE and subsequent statistical processing is applied or the direct solution of variances via Lyapunov-like equations can be performed. In hybrid systems, however, due to lumped-parameter parts included, a non-differential (algebraic) part is generally present in respective mathematical model. Therefore, a stochastic differential-algebraic equation (SDAE) approach has to be considered. The SDAE solution is more complicated in general while a proper numerical technique has to be chosen. In this paper a wa
Název v anglickém jazyce
Evaluation of Variances in Hybrid MTL Systems with Stochastic Parameters via SDAE Approach
Popis výsledku anglicky
In the paper, an attention is paid to hybrid (lumped-distributed) systems with the MTLs as their distributed parts, whereas parameters of the system can vary randomly. In case of the MTL itself, with rather simple terminating elements, just the SDE theory would be applicable when taking into account some proper numerical technique. Usually, evaluation of the dispersion of responses of the system is needed which can be resolved via confidence intervals determination. To do it, either the solution of the SDE and subsequent statistical processing is applied or the direct solution of variances via Lyapunov-like equations can be performed. In hybrid systems, however, due to lumped-parameter parts included, a non-differential (algebraic) part is generally present in respective mathematical model. Therefore, a stochastic differential-algebraic equation (SDAE) approach has to be considered. The SDAE solution is more complicated in general while a proper numerical technique has to be chosen. In this paper a wa
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů