Faraday's law of electromagnetic induction in two parallel conductors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU123232" target="_blank" >RIV/00216305:26220/17:PU123232 - isvavai.cz</a>
Výsledek na webu
<a href="http://content.iospress.com/journals/international-journal-of-applied-electromagnetics-and-mechanics" target="_blank" >http://content.iospress.com/journals/international-journal-of-applied-electromagnetics-and-mechanics</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/JAE-160123" target="_blank" >10.3233/JAE-160123</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Faraday's law of electromagnetic induction in two parallel conductors
Popis výsledku v původním jazyce
A general model for the calculation of current density in two parallel conductors is proposed. The solution of the model is based on the calculation of magnetic fluxes and on the application of Faraday's law of electromagnetic induction. Magnetic fluxes are determined via magnetic field integration. For this purpose, formulae are given in the Appendix Section for the calculation of the magnetic field produced by an infinitely long conductor the cross section of which is a sector of a ring. The proposed model is used to examine a pair of tubular conductors. The conductors are supplied from a source of sinusoidal voltage in steady state. It is assumed that the voltage frequency does not exceed 1~MHz, and the displacement current is neglected. Solutions to several problems are given. The effect of the resistivity of conductors, their distance and the source frequency on the current density and current in the conductors and on their series impedance is analysed. For the calculation of the inductance of distant tubular conductors very simple and exact formulae are derived, and the transient current in these conductors is described when the voltage source is connected and disconnected.
Název v anglickém jazyce
Faraday's law of electromagnetic induction in two parallel conductors
Popis výsledku anglicky
A general model for the calculation of current density in two parallel conductors is proposed. The solution of the model is based on the calculation of magnetic fluxes and on the application of Faraday's law of electromagnetic induction. Magnetic fluxes are determined via magnetic field integration. For this purpose, formulae are given in the Appendix Section for the calculation of the magnetic field produced by an infinitely long conductor the cross section of which is a sector of a ring. The proposed model is used to examine a pair of tubular conductors. The conductors are supplied from a source of sinusoidal voltage in steady state. It is assumed that the voltage frequency does not exceed 1~MHz, and the displacement current is neglected. Solutions to several problems are given. The effect of the resistivity of conductors, their distance and the source frequency on the current density and current in the conductors and on their series impedance is analysed. For the calculation of the inductance of distant tubular conductors very simple and exact formulae are derived, and the transient current in these conductors is described when the voltage source is connected and disconnected.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1210" target="_blank" >LO1210: Energie v podmínkách udržitelného rozvoje (EN-PUR)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS
ISSN
1383-5416
e-ISSN
1875-8800
Svazek periodika
54
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
263-280
Kód UT WoS článku
000401915700010
EID výsledku v databázi Scopus
2-s2.0-85019843239