IDENTIFICATION OF PARKINSON’S DISEASE USING ACOUSTIC ANALYSIS OF POEM RECITATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU123584" target="_blank" >RIV/00216305:26220/17:PU123584 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IDENTIFICATION OF PARKINSON’S DISEASE USING ACOUSTIC ANALYSIS OF POEM RECITATION
Popis výsledku v původním jazyce
Parkinson’s disease (PD) is the second most frequent neurodegenerative disorder. It is estimated that 60–90% of PD patients suffer from speech disorder called hypokinetic dysarthria (HD). The goal of this work is to reveal influence of poem recitation on acoustic analysis of speech and propose concept of Parkinson’s disease identification based on this analysis. Classification methods used in this work are Random Forests and Support Vector Machine. The best achieved accuracy of disease identification is 70.66% with 59.25% sensitivity for Random Forests classifier fed mainly with articulation features. These results demonstrate a high potential of research in this area.
Název v anglickém jazyce
IDENTIFICATION OF PARKINSON’S DISEASE USING ACOUSTIC ANALYSIS OF POEM RECITATION
Popis výsledku anglicky
Parkinson’s disease (PD) is the second most frequent neurodegenerative disorder. It is estimated that 60–90% of PD patients suffer from speech disorder called hypokinetic dysarthria (HD). The goal of this work is to reveal influence of poem recitation on acoustic analysis of speech and propose concept of Parkinson’s disease identification based on this analysis. Classification methods used in this work are Random Forests and Support Vector Machine. The best achieved accuracy of disease identification is 70.66% with 59.25% sensitivity for Random Forests classifier fed mainly with articulation features. These results demonstrate a high potential of research in this area.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 23nd Conference STUDENT EEICT 2017
ISBN
978-80-214-5496-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
619-623
Název nakladatele
Neuveden
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
27. 4. 2017
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—