Matrix pencil design approach towards fractional-order PI, PD and PID regulators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU123652" target="_blank" >RIV/00216305:26220/17:PU123652 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/RADIOELEK.2017.7936653" target="_blank" >http://dx.doi.org/10.1109/RADIOELEK.2017.7936653</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/RADIOELEK.2017.7936653" target="_blank" >10.1109/RADIOELEK.2017.7936653</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Matrix pencil design approach towards fractional-order PI, PD and PID regulators
Popis výsledku v původním jazyce
Synthesis method and its application leading to few derived network structures of the fractional-order PI controllers is proposed in this brief paper. It is based on algorithm originally developed for analysis of the linearized circuits widely known as matrix method of unknown nodal voltages (MMUNV); approach is only reversed. PIα, PDα regulators where α is a decimal-step fractions between zero and unity are discovered systematically by using prescribed voltage transfer function. Since MMUNV has significant degree of freedom derived networks are electronically reconfigurable. Approach leading to PID, PID, PI1-D as well as PID1- with single grounded constant phase element (CPE) is briefly discussed. Proposed concept is verified by considering few designed lumped analog circuits and verified by Orcad Pspice circuit simulations, both as time response to step signal and in the frequency domain. CPE as basic and required building block are implemented as two-terminal devices using known passive ladder topology. Frequency limitations of constructed controllers caused by valid approximation of CPE are mentioned; also in the context of parasitic properties of the active devices.
Název v anglickém jazyce
Matrix pencil design approach towards fractional-order PI, PD and PID regulators
Popis výsledku anglicky
Synthesis method and its application leading to few derived network structures of the fractional-order PI controllers is proposed in this brief paper. It is based on algorithm originally developed for analysis of the linearized circuits widely known as matrix method of unknown nodal voltages (MMUNV); approach is only reversed. PIα, PDα regulators where α is a decimal-step fractions between zero and unity are discovered systematically by using prescribed voltage transfer function. Since MMUNV has significant degree of freedom derived networks are electronically reconfigurable. Approach leading to PID, PID, PI1-D as well as PID1- with single grounded constant phase element (CPE) is briefly discussed. Proposed concept is verified by considering few designed lumped analog circuits and verified by Orcad Pspice circuit simulations, both as time response to step signal and in the frequency domain. CPE as basic and required building block are implemented as two-terminal devices using known passive ladder topology. Frequency limitations of constructed controllers caused by valid approximation of CPE are mentioned; also in the context of parasitic properties of the active devices.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-22712S" target="_blank" >GA15-22712S: Chaotické chování subsystémů radiofrekvenčního kanálu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 27th International Conference Radioelektronika 2017
ISBN
978-1-5090-4591-4
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
Neuveden
Místo vydání
Brno, Czech Republic
Místo konání akce
Brno (Czech Republic)
Datum konání akce
19. 4. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000414280400015