Classification of SURF Image Features by Selected Machine Learning Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU124207" target="_blank" >RIV/00216305:26220/17:PU124207 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8076064" target="_blank" >https://ieeexplore.ieee.org/document/8076064</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2017.8076064" target="_blank" >10.1109/TSP.2017.8076064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of SURF Image Features by Selected Machine Learning Algorithms
Popis výsledku v původním jazyce
We have proposed a concept for classification interesting points in images by means of a machine learning approach. The basic idea is that each interesting point detected in an image is classified either as a point belonging to some trained model (e.g. corner of a license plate) or not. During the first stage, we detected interesting points in a set of images by the well-known SURF method. Then we have employed supervised learning algorithms LDA, QDA, Naive Bayes, Decision tree and SVM to create relevant models of corners in images. Finally, all generated models were evaluated during classification stage by a cross-validation technique and an example experiment of license plate detection has been carried out and is introduced at the very end of this paper. Interesting outcomes have been obtained by the Naive Bayes algorithm resulting in a sensitivity value of the 100% and an accuracy value of the 99.8% on the real-world gallery of 535 images containing over 93 thousand interesting points. Although our gallery is not vast, the results are really promising to use our concept in another applications of robust and real-time object recognition.
Název v anglickém jazyce
Classification of SURF Image Features by Selected Machine Learning Algorithms
Popis výsledku anglicky
We have proposed a concept for classification interesting points in images by means of a machine learning approach. The basic idea is that each interesting point detected in an image is classified either as a point belonging to some trained model (e.g. corner of a license plate) or not. During the first stage, we detected interesting points in a set of images by the well-known SURF method. Then we have employed supervised learning algorithms LDA, QDA, Naive Bayes, Decision tree and SVM to create relevant models of corners in images. Finally, all generated models were evaluated during classification stage by a cross-validation technique and an example experiment of license plate detection has been carried out and is introduced at the very end of this paper. Interesting outcomes have been obtained by the Naive Bayes algorithm resulting in a sensitivity value of the 100% and an accuracy value of the 99.8% on the real-world gallery of 535 images containing over 93 thousand interesting points. Although our gallery is not vast, the results are really promising to use our concept in another applications of robust and real-time object recognition.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 40th International Conference on Telecommunications and Signal Processing
ISBN
978-1-5090-3981-4
ISSN
1805-5435
e-ISSN
—
Počet stran výsledku
6
Strana od-do
636-641
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Barcelona
Místo konání akce
Barcelona
Datum konání akce
5. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000425229000136