Using Optical Methods to Image Shockwaves in Low-Pressure Areas in Order to Increase Accuracy of Simulations of Gas Flows Within Low-Pressure Areas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU124937" target="_blank" >RIV/00216305:26220/17:PU124937 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1149/08101.0305ecst" target="_blank" >http://dx.doi.org/10.1149/08101.0305ecst</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1149/08101.0305ecst" target="_blank" >10.1149/08101.0305ecst</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Optical Methods to Image Shockwaves in Low-Pressure Areas in Order to Increase Accuracy of Simulations of Gas Flows Within Low-Pressure Areas
Popis výsledku v původním jazyce
The area of a shockwave is the most specific area of a supersonic gas flow because its general shape is affected not only by the gas itself but also by the pressure difference between the operating (input) pressure and the atmospheric (output) pressure and by the shape of the aperture or jet the gas passes through. Simulating a supersonic gas flow leaving a jet into a high-pressure area requires to use specific constant values depending on the type of the gas and boundary conditions, which were already experimentally verified. However, when simulating a supersonic gas flow entering a low-pressure (or vacuum) area, different constant values are needed. This paper deals with a possibility of using optical methods for displaying a shockwave within a low-pressure area in order to modify a numerical model of the flow to make the simulated shockwave match the one from experiment.
Název v anglickém jazyce
Using Optical Methods to Image Shockwaves in Low-Pressure Areas in Order to Increase Accuracy of Simulations of Gas Flows Within Low-Pressure Areas
Popis výsledku anglicky
The area of a shockwave is the most specific area of a supersonic gas flow because its general shape is affected not only by the gas itself but also by the pressure difference between the operating (input) pressure and the atmospheric (output) pressure and by the shape of the aperture or jet the gas passes through. Simulating a supersonic gas flow leaving a jet into a high-pressure area requires to use specific constant values depending on the type of the gas and boundary conditions, which were already experimentally verified. However, when simulating a supersonic gas flow entering a low-pressure (or vacuum) area, different constant values are needed. This paper deals with a possibility of using optical methods for displaying a shockwave within a low-pressure area in order to modify a numerical model of the flow to make the simulated shockwave match the one from experiment.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1210" target="_blank" >LO1210: Energie v podmínkách udržitelného rozvoje (EN-PUR)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ECS Transections
ISBN
978-80-214-5384-5
ISSN
1938-5862
e-ISSN
1938-6737
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Antonínská 1, Brno
Datum konání akce
28. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—