Matlab Simulation of Nonlinear Electrical Networks via Volterra Series Expansion and Multidimensional NILT
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU125265" target="_blank" >RIV/00216305:26220/17:PU125265 - isvavai.cz</a>
Výsledek na webu
<a href="http://piers.org/piers2017Singapore/" target="_blank" >http://piers.org/piers2017Singapore/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/PIERS-FALL.2017.8293616" target="_blank" >10.1109/PIERS-FALL.2017.8293616</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Matlab Simulation of Nonlinear Electrical Networks via Volterra Series Expansion and Multidimensional NILT
Popis výsledku v původním jazyce
The paper deals with a simulation of nonlinear networks based on a classical approach of Volterra series expansion. It is known that a multidimensional Laplace transform (MLT) of a time-domain nonlinear impulse response results in the respective Laplace-domain transfer function which helps in finding Volterra kernels, for example via a harmonic input method. After solving the system in the Laplace domain, a final step is to transfer the solution back into the time domain. For this purpose proper multidimensional numerical inverse Laplace transforms (MNILT) are applied with advantages avoiding the usage of rather impractical associate variables method required to receive a single-variable Laplace image. To ensure good convergence and stability of the method the networks are limited to be rather weakly nonlinear when usually the kernels into the third order already yield reasonable results. That is why, methods for up to the third-dimensional NILT (3D-NILT) are discussed in the paper, both the FFT-based one with a quotient-difference algorithm and a hyperbolic one with the Euler transformation. All the discussed methods are programmed and tested in Matlab language while considering a proper model of a nonlinear electrical network.
Název v anglickém jazyce
Matlab Simulation of Nonlinear Electrical Networks via Volterra Series Expansion and Multidimensional NILT
Popis výsledku anglicky
The paper deals with a simulation of nonlinear networks based on a classical approach of Volterra series expansion. It is known that a multidimensional Laplace transform (MLT) of a time-domain nonlinear impulse response results in the respective Laplace-domain transfer function which helps in finding Volterra kernels, for example via a harmonic input method. After solving the system in the Laplace domain, a final step is to transfer the solution back into the time domain. For this purpose proper multidimensional numerical inverse Laplace transforms (MNILT) are applied with advantages avoiding the usage of rather impractical associate variables method required to receive a single-variable Laplace image. To ensure good convergence and stability of the method the networks are limited to be rather weakly nonlinear when usually the kernels into the third order already yield reasonable results. That is why, methods for up to the third-dimensional NILT (3D-NILT) are discussed in the paper, both the FFT-based one with a quotient-difference algorithm and a hyperbolic one with the Euler transformation. All the discussed methods are programmed and tested in Matlab language while considering a proper model of a nonlinear electrical network.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 Progress In Electromagnetics Research Symposium - Fall (PIERS - Fall)
ISBN
978-1-5386-1211-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
2822-2829
Název nakladatele
IEEE
Místo vydání
Singapore
Místo konání akce
Singapore
Datum konání akce
19. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000428518302152