Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SVM Based ECG Classification Using Rhythm and Morphology Features, Cluster Analysis and Multilevel Noise Estimation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU126147" target="_blank" >RIV/00216305:26220/17:PU126147 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.22489/CinC.2017.172-200" target="_blank" >http://dx.doi.org/10.22489/CinC.2017.172-200</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.22489/CinC.2017.172-200" target="_blank" >10.22489/CinC.2017.172-200</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SVM Based ECG Classification Using Rhythm and Morphology Features, Cluster Analysis and Multilevel Noise Estimation

  • Popis výsledku v původním jazyce

    Background: Smartphone-based ECG devices comprise great potential in screening for arrhythmias. However, its feasibility is limited by poor signal quality leading to incorrect rhythm classification. In this study, advanced method for automatic classification of normal rhythm (N), atrial fibrillation (A), other rhythm (O), and noisy records (P) is introduced. Methods: Two-step SVM approach followed by simple threshold based rules was used for data classification. In the first step, various features were derived from separate beats to represent particular events (normal as well as pathological and artefacts) in more detail. Output of the first classifier was used to calculate global features describing entire ECG. These features were then used to train the second classification model. Both classifiers were evaluated on training set via cross-validation technique, and additionally on hidden testing set. Results: In the Phase II of challenge, total F1 score of the method is 0.81 and 0.84 within hidden challenge dataset and training set, respectively. Particular F1 scores within hidden challenge dataset are 0.90 (N), 0.81 (A), 0.72 (O), and 0.55 (P). Particular F1 scores within training set are 0.91 (N), 0.85 (A), 0.76 (O), and 0.73 (P).

  • Název v anglickém jazyce

    SVM Based ECG Classification Using Rhythm and Morphology Features, Cluster Analysis and Multilevel Noise Estimation

  • Popis výsledku anglicky

    Background: Smartphone-based ECG devices comprise great potential in screening for arrhythmias. However, its feasibility is limited by poor signal quality leading to incorrect rhythm classification. In this study, advanced method for automatic classification of normal rhythm (N), atrial fibrillation (A), other rhythm (O), and noisy records (P) is introduced. Methods: Two-step SVM approach followed by simple threshold based rules was used for data classification. In the first step, various features were derived from separate beats to represent particular events (normal as well as pathological and artefacts) in more detail. Output of the first classifier was used to calculate global features describing entire ECG. These features were then used to train the second classification model. Both classifiers were evaluated on training set via cross-validation technique, and additionally on hidden testing set. Results: In the Phase II of challenge, total F1 score of the method is 0.81 and 0.84 within hidden challenge dataset and training set, respectively. Particular F1 scores within hidden challenge dataset are 0.90 (N), 0.81 (A), 0.72 (O), and 0.55 (P). Particular F1 scores within training set are 0.91 (N), 0.85 (A), 0.76 (O), and 0.73 (P).

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP102%2F12%2F2034" target="_blank" >GAP102/12/2034: Analýza vztahu mezi elektrickými ději a průtokem krve u srdečních komor</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computing in Cardiology 2017

  • ISBN

    978-1-5090-0684-7

  • ISSN

    0276-6574

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    1-4

  • Název nakladatele

    Neuveden

  • Místo vydání

    Rennes, France

  • Místo konání akce

    Rennes

  • Datum konání akce

    24. 9. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000450651100150