Automatic voice analysis for dysphagia detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU125121" target="_blank" >RIV/00216305:26220/18:PU125121 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.tandfonline.com/doi/full/10.1080/2050571X.2017.1369017" target="_blank" >http://www.tandfonline.com/doi/full/10.1080/2050571X.2017.1369017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/2050571X.2017.1369017" target="_blank" >10.1080/2050571X.2017.1369017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic voice analysis for dysphagia detection
Popis výsledku v původním jazyce
Purpose: A videofluoroscopic analysis is the gold standard approach to determine whether a dysphagia problem exists. This procedure is invasive as it involves radiation but also provides the most direct physical evidence of swallowing problems. The main goal of this study was to evaluate an automatic tool based on voice analysis to support medical detection of dysphagia. Methods: An automatic voice analysis system has been developed. Prior to (basal) and immediately following (viscosity) swallowing liquids of varying viscosity and volume, individuals with Parkinson Disease were required to produce the same test word. The acoustic features (linear and non-linear) of this word were then analyzed with regard to specific situations by standard and Machine Learning methods. Results: The results indicated a high degree of accuracy in detecting voice associated with basal and viscosity states. Conclusion: Thus, while the gold standard of dysphagia diagnosis continues to involve video-fluoroscopy analysis, the consideration of voice analysis may prove to be a far simpler and less invasive approach to diagnosis by advanced voice features.
Název v anglickém jazyce
Automatic voice analysis for dysphagia detection
Popis výsledku anglicky
Purpose: A videofluoroscopic analysis is the gold standard approach to determine whether a dysphagia problem exists. This procedure is invasive as it involves radiation but also provides the most direct physical evidence of swallowing problems. The main goal of this study was to evaluate an automatic tool based on voice analysis to support medical detection of dysphagia. Methods: An automatic voice analysis system has been developed. Prior to (basal) and immediately following (viscosity) swallowing liquids of varying viscosity and volume, individuals with Parkinson Disease were required to produce the same test word. The acoustic features (linear and non-linear) of this word were then analyzed with regard to specific situations by standard and Machine Learning methods. Results: The results indicated a high degree of accuracy in detecting voice associated with basal and viscosity states. Conclusion: Thus, while the gold standard of dysphagia diagnosis continues to involve video-fluoroscopy analysis, the consideration of voice analysis may prove to be a far simpler and less invasive approach to diagnosis by advanced voice features.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30210 - Clinical neurology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Speech, Language and Hearing
ISSN
2050-5728
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
4
Strana od-do
86-89
Kód UT WoS článku
000434869900007
EID výsledku v databázi Scopus
2-s2.0-85031404349