Automatic Detection of Strict Left Bundle Branch Block
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU127907" target="_blank" >RIV/00216305:26220/18:PU127907 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00159816:_____/19:00072534
Výsledek na webu
<a href="https://www.springer.com/us/book/9789811090226#aboutBook" target="_blank" >https://www.springer.com/us/book/9789811090226#aboutBook</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-9038-7_82" target="_blank" >10.1007/978-981-10-9038-7_82</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Detection of Strict Left Bundle Branch Block
Popis výsledku v původním jazyce
Strict (true) left bundle branch block (tLBBB) ECG morphology is a new diagnostic marker in cardiology that was proposed to predict cardiac resynchronization therapy (CRT) responders. In this paper we present an algorithm for the automatic detection of tLBBB. This algorithm includes mid-QRS notching and slurring detection, QRS duration measurement and tLBBB morphology detection. All required morphologies are detected in the time domain using thresholding of simple features of signal. In order to test our algorithms, three experts labelled 78 ECG records (12 leads, fs = 5 kHz, 15 min); 51 records were labeled as tLBBB. The proposed algorithms were tested showing overall sensitivity and specificity 98 and 86%, respectively, in cases where all three experts reached full consensus (82% of the dataset). Our method showed lower sensitivity and higher specificity 96% and 88%, respectively, for the dataset including cases where experts mutually disagreed, consensus has been reached through expert discussion in these records.
Název v anglickém jazyce
Automatic Detection of Strict Left Bundle Branch Block
Popis výsledku anglicky
Strict (true) left bundle branch block (tLBBB) ECG morphology is a new diagnostic marker in cardiology that was proposed to predict cardiac resynchronization therapy (CRT) responders. In this paper we present an algorithm for the automatic detection of tLBBB. This algorithm includes mid-QRS notching and slurring detection, QRS duration measurement and tLBBB morphology detection. All required morphologies are detected in the time domain using thresholding of simple features of signal. In order to test our algorithms, three experts labelled 78 ECG records (12 leads, fs = 5 kHz, 15 min); 51 records were labeled as tLBBB. The proposed algorithms were tested showing overall sensitivity and specificity 98 and 86%, respectively, in cases where all three experts reached full consensus (82% of the dataset). Our method showed lower sensitivity and higher specificity 96% and 88%, respectively, for the dataset including cases where experts mutually disagreed, consensus has been reached through expert discussion in these records.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-13830S" target="_blank" >GA17-13830S: Analytické metody pro pokročilou identifikaci komorové dyssynchronie</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress on Medical Physics and Biomedical Engineering 2018
ISBN
978-981-10-9038-7
ISSN
1680-0737
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
Springer Singapore
Místo vydání
Prague, Czech Republic
Místo konání akce
Prague
Datum konání akce
3. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000449742700082