Image Processing Based Classification of Enzymatic Browning in Chopped Apples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU129520" target="_blank" >RIV/00216305:26220/18:PU129520 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8464181" target="_blank" >https://ieeexplore.ieee.org/document/8464181</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IWOBI.2018.8464181" target="_blank" >10.1109/IWOBI.2018.8464181</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image Processing Based Classification of Enzymatic Browning in Chopped Apples
Popis výsledku v původním jazyce
Apples are one of the most common fruit on the planet. It is rich in iron, fiber, antioxidants and other nutritive quality; which are incredibly important for human body and brain. The quality of an apple gets affected once they are chopped. This paper presents a non-destructive image processing based algorithm that identifies the presence of enzymatic browning in chopped apples for the determination of its nutrients loss. The proposed imperative assemblage of this image processing algorithm makes it flexible, automatic and non-destructive. The quantification of enzymatic browning in chopped apples has been obtained with high precision using this proposed imaging based method. The machine learning based on strategic selection of discriminatory statistical features of chopped apples extracted in wavelet domain makes it a novel approach. 85% of accuracy has been achieved by using machine learning based Support Vector Machine (SVM) classifier.
Název v anglickém jazyce
Image Processing Based Classification of Enzymatic Browning in Chopped Apples
Popis výsledku anglicky
Apples are one of the most common fruit on the planet. It is rich in iron, fiber, antioxidants and other nutritive quality; which are incredibly important for human body and brain. The quality of an apple gets affected once they are chopped. This paper presents a non-destructive image processing based algorithm that identifies the presence of enzymatic browning in chopped apples for the determination of its nutrients loss. The proposed imperative assemblage of this image processing algorithm makes it flexible, automatic and non-destructive. The quantification of enzymatic browning in chopped apples has been obtained with high precision using this proposed imaging based method. The machine learning based on strategic selection of discriminatory statistical features of chopped apples extracted in wavelet domain makes it a novel approach. 85% of accuracy has been achieved by using machine learning based Support Vector Machine (SVM) classifier.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)
ISBN
978-1-5386-7506-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)
Místo vydání
San Carlos, Costa Rica
Místo konání akce
Dubai, UAE
Datum konání akce
27. 8. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—