Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

General Regression Neural Network Based Audio Watermarking Algorithm Using Torus Automorphism

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU129591" target="_blank" >RIV/00216305:26220/18:PU129591 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/TSP.2018.8441174" target="_blank" >http://dx.doi.org/10.1109/TSP.2018.8441174</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP.2018.8441174" target="_blank" >10.1109/TSP.2018.8441174</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    General Regression Neural Network Based Audio Watermarking Algorithm Using Torus Automorphism

  • Popis výsledku v původním jazyce

    Accurate extraction of embedded data at the receiver end is still a major point of consideration in audio watermarking area. This paper portrays a blind audio watermarking scheme in transform domain using the combination of properties of audio signal extracted through singular value decomposition and general regression neural network leading to exact extraction of watermark. The security of embedded watermark is assured by using torus automorphism at the embedded side. Results from the experimental setup validate the accuracy of proposed scheme. The payload capacity of proposed algorithm is 62.5 bps. The comparison of proposed scheme with existing ones indicate that the proposed scheme has shown good efficiency in terms of robustness, payload and transparency.

  • Název v anglickém jazyce

    General Regression Neural Network Based Audio Watermarking Algorithm Using Torus Automorphism

  • Popis výsledku anglicky

    Accurate extraction of embedded data at the receiver end is still a major point of consideration in audio watermarking area. This paper portrays a blind audio watermarking scheme in transform domain using the combination of properties of audio signal extracted through singular value decomposition and general regression neural network leading to exact extraction of watermark. The security of embedded watermark is assured by using torus automorphism at the embedded side. Results from the experimental setup validate the accuracy of proposed scheme. The payload capacity of proposed algorithm is 62.5 bps. The comparison of proposed scheme with existing ones indicate that the proposed scheme has shown good efficiency in terms of robustness, payload and transparency.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1401" target="_blank" >LO1401: Interdisciplinární výzkum bezdrátových technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the IEEE 2018 41st International Conference on Telecommunications and Signal Processing (TSP2018)

  • ISBN

    978-1-5386-4695-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    1-4

  • Název nakladatele

    IEEE

  • Místo vydání

    Athens, Greece

  • Místo konání akce

    Athens, Greece

  • Datum konání akce

    4. 7. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000454845100084