Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Scalable Algorithm for Network Localization and Synchronization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU140252" target="_blank" >RIV/00216305:26220/18:PU140252 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8306100" target="_blank" >https://ieeexplore.ieee.org/document/8306100</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JIOT.2018.2811408" target="_blank" >10.1109/JIOT.2018.2811408</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Scalable Algorithm for Network Localization and Synchronization

  • Popis výsledku v původním jazyce

    The Internet of Things (IoT) will seamlessly integrate a large number of densely deployed heterogeneous devices and will enable new location-aware services. However, fine-grained localization of IoT devices is challenging as their computation and communication resources are typically limited and different devices may have different qualities of internal clocks and different mobility patterns. To address these challenges, we propose a cooperative, scalable, and time-recursive algorithm for network localization and synchronization (NLS). Our algorithm is based on time measurements and supports heterogeneous devices with limited computation and communication resources, time-varying clock and location parameters, arbitrary state-evolution models, and time-varying network connectivity. These attributes make the proposed algorithm attractive for IoT-related applications. The algorithm is furthermore able to incorporate measurements from additional sensors for positioning, navigation, and timing such as receivers for global navigation satellite systems. Based on a factor graph representation of the underlying spatiotemporal Bayesian sequential estimation problem, the algorithm uses belief propagation (BP) for an efficient marginalization of the joint posterior distribution. To account for the nonlinear measurement model and nonlinear state-evolution models while keeping the communication and computation requirements low, we develop an efficient second-order implementation of the BP rules by means of the recently introduced sigma point belief propagation technique. Simulation results demonstrate the high synchronization and localization accuracy as well as the low computational complexity of the proposed algorithm. In particular, in sufficiently dense networks, the proposed algorithm outperforms the state-of-the-art BP-based algorithm for NLS in terms of both estimation accuracy and computational complexity.

  • Název v anglickém jazyce

    A Scalable Algorithm for Network Localization and Synchronization

  • Popis výsledku anglicky

    The Internet of Things (IoT) will seamlessly integrate a large number of densely deployed heterogeneous devices and will enable new location-aware services. However, fine-grained localization of IoT devices is challenging as their computation and communication resources are typically limited and different devices may have different qualities of internal clocks and different mobility patterns. To address these challenges, we propose a cooperative, scalable, and time-recursive algorithm for network localization and synchronization (NLS). Our algorithm is based on time measurements and supports heterogeneous devices with limited computation and communication resources, time-varying clock and location parameters, arbitrary state-evolution models, and time-varying network connectivity. These attributes make the proposed algorithm attractive for IoT-related applications. The algorithm is furthermore able to incorporate measurements from additional sensors for positioning, navigation, and timing such as receivers for global navigation satellite systems. Based on a factor graph representation of the underlying spatiotemporal Bayesian sequential estimation problem, the algorithm uses belief propagation (BP) for an efficient marginalization of the joint posterior distribution. To account for the nonlinear measurement model and nonlinear state-evolution models while keeping the communication and computation requirements low, we develop an efficient second-order implementation of the BP rules by means of the recently introduced sigma point belief propagation technique. Simulation results demonstrate the high synchronization and localization accuracy as well as the low computational complexity of the proposed algorithm. In particular, in sufficiently dense networks, the proposed algorithm outperforms the state-of-the-art BP-based algorithm for NLS in terms of both estimation accuracy and computational complexity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Internet of Things Journal

  • ISSN

    2327-4662

  • e-ISSN

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    4714-4727

  • Kód UT WoS článku

    000456475500045

  • EID výsledku v databázi Scopus