Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Distributed Bernoulli Filtering Using Likelihood Consensus

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU140253" target="_blank" >RIV/00216305:26220/18:PU140253 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8579567" target="_blank" >https://ieeexplore.ieee.org/document/8579567</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSIPN.2018.2881718" target="_blank" >10.1109/TSIPN.2018.2881718</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Distributed Bernoulli Filtering Using Likelihood Consensus

  • Popis výsledku v původním jazyce

    We consider the detection and tracking of a target in a decentralized sensor network. The presence of the target is uncertain, and the sensor measurements are affected by clutter and missed detections. The state-evolution model and the measurement model may be nonlinear and non-Gaussian. For this practically relevant scenario, we propose a particle-based distributed Bernoulli filter (BF) that provides to each sensor approximations of the Bayes-optimal estimates of the target presence probability and the target state. The proposed method uses all the measurements in the network while requiring only local intersensor communication. This is enabled by an extension of the likelihood consensus method that reaches consensus on the likelihood function under both the target presence and target absence hypotheses. We also propose an adaptive pruning of the likelihood expansion coefficients that yields a significant reduction of intersensor communication. Finally, we present a new variant of the likelihood consensus method that is suited to networks containing star-connected sensor groups. Simulation results show that in challenging scenarios, including a heterogeneous sensor network with significant noise and clutter, the performance of the proposed distributed BF approaches that of the optimal centralized multisensor BE We also demonstrate that the proposed distributed BF outperforms a state-of-the-art distributed BF at the expense of a higher amount of intersensor communication.

  • Název v anglickém jazyce

    Distributed Bernoulli Filtering Using Likelihood Consensus

  • Popis výsledku anglicky

    We consider the detection and tracking of a target in a decentralized sensor network. The presence of the target is uncertain, and the sensor measurements are affected by clutter and missed detections. The state-evolution model and the measurement model may be nonlinear and non-Gaussian. For this practically relevant scenario, we propose a particle-based distributed Bernoulli filter (BF) that provides to each sensor approximations of the Bayes-optimal estimates of the target presence probability and the target state. The proposed method uses all the measurements in the network while requiring only local intersensor communication. This is enabled by an extension of the likelihood consensus method that reaches consensus on the likelihood function under both the target presence and target absence hypotheses. We also propose an adaptive pruning of the likelihood expansion coefficients that yields a significant reduction of intersensor communication. Finally, we present a new variant of the likelihood consensus method that is suited to networks containing star-connected sensor groups. Simulation results show that in challenging scenarios, including a heterogeneous sensor network with significant noise and clutter, the performance of the proposed distributed BF approaches that of the optimal centralized multisensor BE We also demonstrate that the proposed distributed BF outperforms a state-of-the-art distributed BF at the expense of a higher amount of intersensor communication.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-19638S" target="_blank" >GA17-19638S: Určování pohybu arteriální stěny pomocí sekvenčního bayesovského odhadu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Signal and Information Processing over Networks

  • ISSN

    2373-776X

  • e-ISSN

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    218-233

  • Kód UT WoS článku

    000467571500002

  • EID výsledku v databázi Scopus