Multiconductor Transmission Line System with Stochastically Affected Boundary Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU132844" target="_blank" >RIV/00216305:26220/19:PU132844 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8787203" target="_blank" >https://ieeexplore.ieee.org/document/8787203</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/MIXDES.2019.8787203" target="_blank" >10.23919/MIXDES.2019.8787203</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiconductor Transmission Line System with Stochastically Affected Boundary Conditions
Popis výsledku v původním jazyce
The paper deals with the application of stochastic differential-algebraic equation (SDAE) approach to evaluate responses of multiconductor transmission lines (MTL) with stochastically affected boundary conditions. Respective SDAEs are formulated by a modified nodal analysis (MNA) to describe lumped-parameter circuit terminating the MTL and defining the boundary conditions. These can be under stochastic affects by considering internal non-deterministic independent sources. Because of the MTL itself is described by the telegraph partial differential equations (PDE), which will be solved via an implicit Wendroff numerical scheme, the MNA SDAE will be solved via a compatible implicit Euler scheme in its stochastic version after completing the deterministic DAE with an additive noise. The MTL’s responses are presented in the form of sets of individual stochastic trajectories postprocessed and completed with sample means and confidence intervals. The results were compared with those based on the MTL lumped-parameter model formed by generalized RLCG T-cells in cascade. All the simulations have been done in Matlab.
Název v anglickém jazyce
Multiconductor Transmission Line System with Stochastically Affected Boundary Conditions
Popis výsledku anglicky
The paper deals with the application of stochastic differential-algebraic equation (SDAE) approach to evaluate responses of multiconductor transmission lines (MTL) with stochastically affected boundary conditions. Respective SDAEs are formulated by a modified nodal analysis (MNA) to describe lumped-parameter circuit terminating the MTL and defining the boundary conditions. These can be under stochastic affects by considering internal non-deterministic independent sources. Because of the MTL itself is described by the telegraph partial differential equations (PDE), which will be solved via an implicit Wendroff numerical scheme, the MNA SDAE will be solved via a compatible implicit Euler scheme in its stochastic version after completing the deterministic DAE with an additive noise. The MTL’s responses are presented in the form of sets of individual stochastic trajectories postprocessed and completed with sample means and confidence intervals. The results were compared with those based on the MTL lumped-parameter model formed by generalized RLCG T-cells in cascade. All the simulations have been done in Matlab.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 26th International Conference “Mixed Design of Integrated Circuits and Systems” - MIXDES 2019
ISBN
978-83-63578-15-2
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
316-320
Název nakladatele
Department of Microelectronics and Computer Science, Lodz University of Technology, Poland
Místo vydání
Rzeszów, Poland
Místo konání akce
Rzeszów, Poland
Datum konání akce
27. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000538328000057